Browse > Article
http://dx.doi.org/10.4490/algae.2016.31.2.10

The clonal seaweed Chondrus crispus as a foundation species  

Scrosati, Ricardo A. (Department of Biology, St. Francis Xavier University)
Publication Information
ALGAE / v.31, no.1, 2016 , pp. 41-48 More about this Journal
Abstract
The clonal seaweed Chondrus crispus (Rhodophyta, Gigartinales) forms extensive stands at low intertidal elevations on wave-sheltered rocky shores of the North Atlantic. This study investigates if this bushy alga acts as a foundation species in such habitats. The abundance (percent cover) of C. crispus, all other algae, and invertebrates was measured in 390 quadrats spanning 350 km of coast in Nova Scotia, Canada. In these low-intertidal habitats, fucoid algae are the largest organisms and can form extensive canopies, but their cover was unrelated to benthic species richness and to C. crispus cover. Species richness, however, increased with C. crispus cover from low to intermediate cover values, showing little change towards full C. crispus cover. Species composition (a combined measure of species identity and their relative abundance) differed between quadrats with low (0-1%) and high (60-100%) cover of C. crispus. High C. crispus cover was associated to more invertebrate species but fewer algal species than low C. crispus cover. However, the average abundance of algal and invertebrate species occurring in both cover groups was often higher under high C. crispus cover, contributing to a higher average richness at the quadrat scale. Overall, only 16% of the observed variation in species richness was explained by C. crispus cover. Therefore, this study suggests that C. crispus acts as a foundation species but with a moderate influence.
Keywords
Chondrus; community structure; foundation species; Gigartinales; intertidal;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Hammill, E., Atwood, T. B. & Srivastava, D. S. 2015. Predation threat alters composition and functioning of bromeliad ecosystems. Ecosystems 18:857-866.
2 Harley, C. D. G. 2008. Tidal dynamics, topographic orientation, and temperature-mediated mass mortalities on rocky shores. Mar. Ecol. Prog. Ser. 371:37-46.   DOI
3 Harley, C. D. G. & O’Riley, J. L. 2011. Non-linear density-dependent effects of an intertidal ecosystem engineer. Oecologia 166:531-541.   DOI
4 Hay, M. E. 1981. The functional morphology of turf-forming seaweeds: persistence in stressful marine habitats. Ecology 62:739-750.   DOI
5 Johnson, S. C. & Scheibling, R. E. 1987. Structure and dynamics of epifaunal assemblages on intertidal macroalgae Ascophyllum nodosum and Fucus vesiculosus in Nova Scotia, Canada. Mar. Ecol. Prog. Ser. 37:209-227.   DOI
6 Heaven, C. S. & Scrosati, R. A. 2008. Benthic community composition across gradients of intertidal elevation, wave exposure, and ice scour in Atlantic Canada. Mar. Ecol. Prog. Ser. 369:13-23.   DOI
7 Hu, Z., Guiry, M. D., Critchley, A. T. & Duan, D. 2010. Phylogeographic patterns indicate transatlantic migration from Europe to North America in the red seaweed Chondrus crispus (Gigartinales, Rhodophyta). J. Phycol. 46:889-900.   DOI
8 Johnson, A. S. 2001. Drag, drafting, and mechanical interactions in canopies of the red alga Chondrus crispus. Biol. Bull. 201:126-135.   DOI
9 Jones, E. & Thornber, C. S. 2010. Effects of habitat-modifying invasive macroalgae on epiphytic algal communities. Mar. Ecol. Prog. Ser. 400:87-100.   DOI
10 Kikvidze, Z., Brooker, R. W., Butterfield, B. J., Callaway, R. M., Cavieres, L. A., Cook, B. J., Lortie, C. J., Michalet, R., Pugnaire, F. I., Xiao, S., Anthelme, F., Björk, R. G., Cranston, B. H., Gavilán, R. G., Kanka, R., Lingua, E., Maalouf, J.-P., Noroozi, J., Parajuli, R., Phoenix, G. K., Reid, A., Ridenour, W. M., Rixen, C. & Schöb, C. 2015. The effects of foundation species on community assembly: a global study on alpine cushion plant communities. Ecology 96:2064-2069.   DOI
11 Kim, J. H. 1997. The role of herbivory, and direct and indirect interactions, in algal succession. J. Exp. Mar. Biol. Ecol. 217:119-135.   DOI
12 Lau, W. W. Y. & Martinez, M. M. 2003. Getting a grip on the intertidal: flow microhabitat and substratum type determine the dislodgement of the crab Pachygrapsus crassipes (Randall) on rocky shores and in estuaries. J. Exp. Mar. Biol. Ecol. 295:1-21.   DOI
13 Martín, A., Miloslavich, P., Díaz, Y., Ortega, I., Klein, E., Troncoso, J., Aldea, C. & Carbonini, A. K. 2016. Intertidal benthic communities associated with the macroalgae Iridaea cordata and Adenocystis utricularis in King George Island, Antarctica. Polar Biol. 39:207-220.   DOI
14 Longtin, C. M., Scrosati, R. A., Whalen, G. B. & Garbary, D. J. 2009. Distribution of algal epiphytes across environmental gradients at different scales: intertidal elevation, host canopies, and host fronds. J. Phycol. 45:820-827.   DOI
15 Lubchenco, J. 1980. Algal zonation in the New England rocky intertidal community: an experimental analysis. Ecology 61:333-344.   DOI
16 Lubchenco, J. & Menge, B. A. 1978. Community development and persistence in a low rocky intertidal zone. Ecol. Monogr. 48:67-94.   DOI
17 McLachlan, J. L. 1991. Chondrus crispus (Irish moss), an ecologically important and commercially valuable species of red seaweed of the North Atlantic Ocean. In Mauchline, J. & Nemoto, T. (Eds.) Marine Biology: Its Accomplishments and Future Prospects. Hokusen-sha, Tokyo, pp. 217-233.
18 Martinez, A. J. 2003. Marine life of the North Atlantic: Canada to New England. Aqua Quest Publications, Locust Valley, NY, 272 pp.
19 Matias, M. G., Arenas, F., Rubal, M. & Sousa Pinto, I. 2015. Macroalgal composition determines the structure of benthic assemblages colonizing fragmented habitats. PLoS ONE 10:e0142289.   DOI
20 Matos, J., Costa, S., Rodrigues, A., Pereira, R. & Sousa Pinto, I. 2006. Experimental integrated aquaculture of fish and red seaweeds in northern Portugal. Aquaculture 252:31-42.   DOI
21 Menge, B. A. 1995. Indirect effects in marine rocky intertidal interaction webs: patterns and importance. Ecol. Monogr. 65:21-74.   DOI
22 Sagarin, R. & Pauchard, A. 2010. Observational approaches in ecology open new ground in a changing world. Front. Ecol. Environ. 8:379-386.   DOI
23 Menge, B. A., Foley, M. M., Pamplin, J., Murphy, G. & Pennington, C. 2010. Supply-side ecology, barnacle recruitment, and rocky intertidal community dynamics: do settlement surface and limpet disturbance matter? J. Exp. Mar. Biol. Ecol. 392:160-175.   DOI
24 Pollock, L. W. 1998. A practical guide to the marine animals of northeastern North America. Rutgers University Press, New Brunswick, NJ, 367 pp.
25 Raffaelli, D. & Hawkins, S. 1999. Intertidal ecology. Springer, Dordrecht, 356 pp.
26 Scrosati, R. & Mudge, B. 2004. Persistence of gametophyte predominance in Chondrus crispus (Rhodophyta, Gigartinaceae) from Nova Scotia after 12 years. Hydrobiologia 519:215-218.   DOI
27 Scrosati, R. & DeWreede, R. E. 1998. The impact of frond crowding on frond bleaching in the clonal intertidal alga Mazzaella cornucopiae (Rhodophyta, Gigartinaceae) from British Columbia, Canada. J. Phycol. 34:228-232.   DOI
28 Scrosati, R., Garbary, D. J. & McLachlan, J. 1994. Reproductive ecology of Chondrus crispus (Rhodophyta, Gigartinales) from Nova Scotia, Canada. Bot. Mar. 37:293-300.
29 Scrosati, R. & Heaven, C. 2007. Spatial trends in community richness, diversity, and evenness across rocky intertidal environmental stress gradients in eastern Canada. Mar. Ecol. Prog. Ser. 342:1-14.   DOI
30 Sears, J. R. 1998. NEAS keys to the benthic marine algae of the northeastern coast of North America from Long Island Sound to the Strait of Belle Isle. Northeast Algal Society, Dartmouth, MA, 161 pp.
31 Thomas, P. A. & Packham, J. R. 2007. Ecology of woodlands and forests: description, dynamics and diversity. Cambridge University Press, Cambridge, 528 pp.
32 Sept, J. D. 2008. A photographic guide to seashore life in the North Atlantic: Canada to Cape Cod. Princeton University Press, Princeton, NJ, 224 pp.
33 Smith, J. R., Vogt, S. C., Creedon, F., Lucas, B. J. & Eernisse, D. J. 2014. The non-native turf-forming alga Caulacanthus ustulatus displaces space-occupants but increases diversity. Biol. Invasions 16:2195-2208.   DOI
34 Sokal, R. R. & Rohlf, F. J. 2012. Biometry: the principles and practice of statistics in biological research. W. H. Freeman, New York, NY, 937 pp.
35 Watt, C. A. & Scrosati, R. A. 2013b. Regional consistency of intertidal elevation as a mediator of seaweed canopy effects on benthic species richness, diversity, and composition. Mar. Ecol. Prog. Ser. 491:91-99.   DOI
36 Valdivia, N. & Molis, M. 2009. Observational evidence of a negative biodiversity-stability relationship in intertidal epibenthic communities. Aquat. Biol. 4:263-271.   DOI
37 Vaselli, S., Bertocci, I., Maggi, E. & Benedetti-Cecchi, L. 2008. Assessing the consequences of sea level rise: effects of changes in the slope of the substratum on sessile assemblages of rocky seashores. Mar. Ecol. Prog. Ser. 368:9-22.   DOI
38 Watt, C. A. & Scrosati, R. A. 2013a. Bioengineer effects on understory species richness, diversity, and composition change along an environmental stress gradient: experimental and mensurative evidence. Estuar. Coast. Shelf Sci. 123:10-18.   DOI
39 Watt, C. A. & Scrosati, R. A. 2014. Experimental and mensurative data on the abundance of primary producers and consumers from intertidal habitats in Canada. Ecology 95:1429.   DOI
40 Arribas, L. P., Donnarumma, L., Palomo, M. G. & Scrosati, R. A. 2014. Intertidal mussels as ecosystem engineers: their associated invertebrate biodiversity under contrasting wave exposures. Mar. Biodivers. 44:203-211.   DOI
41 Altieri, A. H. & van de Koppel, J. 2014. Foundation species in marine ecosystems. In Bertness, M. D., Bruno, J. F., Silliman, B. R. & Stachowicz, J. J. (Eds.) Marine Community Ecology and Conservation. Sinauer Associates, Sunderland, CA, pp. 37-56.
42 Anderson, D. R. 2008. Model-based inference in the life sciences: a primer on evidence. Springer, New York, NY, 184 pp.
43 Angelini, C. & Silliman, B. R. 2014. Secondary foundation species as drivers of trophic and functional diversity: evidence from a tree-epiphyte system. Ecology 95:185-196.   DOI
44 Bäcklund, S., Jönsson, M., Strengbom, J., Frisch, A. & Thor, G. 2016. A pine is a pine and a spruce is a spruce: the effect of tree species and stand age on epiphytic lichen communities. PLoS ONE 11:e0147004.   DOI
45 Chopin, T., Sharp, G., Belyea, E., Semple, R. & Jones, D. 1999. Open-water aquaculture of the red alga Chondrus crispus in Prince Edward Island, Canada. Hydrobiologia 398/399:417-425.   DOI
46 Ballantyne, M. & Pickering, C. M. 2015. Shrub facilitation is an important driver of alpine plant community diversity and functional composition. Biodivers. Conserv. 24:1859-1875.   DOI
47 Beermann, A. J., Ellrich, J. A., Molis, M. & Scrosati, R. A. 2013. Effects of seaweed canopies and adult barnacles on barnacle recruitment: the interplay of positive and negative influences. J. Exp. Mar. Biol. Ecol. 448:162-170.   DOI
48 Bertness, M. D., Leonard, G. H., Levine, J. M., Schmidt, P. R. & Ingraham, A. O. 1999. Testing the relative contribution of positive and negative interactions in rocky intertidal communities. Ecology 80:2711-2726.   DOI
49 Boller, M. L. & Carrington, E. 2006. In situ measurements of hydrodynamic forces imposed on Chondrus crispus Stackhouse. J. Exp. Mar. Biol. Ecol. 337:159-170.   DOI
50 Carrington, E., Grace, S. P. & Chopin, T. 2001. Life history phase and the biomechanical properties of the red alga Chondrus crispus (Rhodophyta). J. Phycol. 37:699-704.   DOI
51 Chen, L. C. -M. & McLachlan, J. 1972. The life history of Chondrus crispus in culture. Can. J. Bot. 50:1055-1060.   DOI
52 Clarke, K. R. & Warwick, R. M. 2001. Change in marine communities: an approach to statistical analysis and interpretation. PRIMER-E Ltd, Plymouth, 175 pp.
53 Connell, S. D., Foster, M. S. & Airoldi, L. 2014. What are algal turfs? Towards a better description of turfs. Mar. Ecol. Prog. Ser. 495:299-307.   DOI
54 Golléty, C., Thiébaut, E. & Davoult, D. 2011. Characteristics of the Ascophyllum nodosum stands and their associated diversity along the coast of Brittany, France. J. Mar. Biol. Assoc. U. K. 91:569-577.   DOI
55 Corey, P., Kim, J. K., Duston, J., Garbary, D. J. & Prithiviraj, B. 2013. Bioremediation potential of Palmaria palmata and Chondrus crispus (Basin Head): effect of nitrate and ammonium ratio as nitrogen source on nutrient removal. J. Appl. Phycol. 25:1349-1358.   DOI
56 Dislich, R. & Mantovani, W. 2016. Vascular epiphyte assemblages in a Brazilian Atlantic forest fragment: investigating the effect of host tree features. Plant Ecol. 217:1-12.   DOI
57 Ellrich, J. A., Scrosati, R. A. & Molis, M. 2015. Predator non-consumptive effects on prey recruitment weaken with recruit density. Ecology 96:611-616.   DOI
58 Fernández, Á., Arenas, F., Trilla, A., Rodríguez, S., Rueda, L. & Martínez, B. 2015. Additive effects of emersion stressors on the ecophysiological performance of two intertidal seaweeds. Mar. Ecol. Prog. Ser. 536:135-147.   DOI
59 Garbary, D. J., Tompkins, E., White, K., Corey, P. & Kim, J. K. 2011. Temporal and spatial variation in the distribution of life history phases of Chondrus crispus (Gigartinales, Rhodophyta). Algae 26:61-71.   DOI
60 Gibson, M. A. 2003. Seashores of the Maritimes. Nimbus Publishing, Halifax, NS, 346 pp.
61 Guenther, R. J. & Martone, P. T. 2014. Physiological performance of intertidal coralline algae during a simulated tidal cycle. J. Phycol. 50:310-321.   DOI
62 Guidone, M. & Grace, S. 2010. The ratio of gametophytes to tetrasporophytes of intertidal Chondrus crispus (Gigartinaceae) across a salinity gradient. Rhodora 112:80-84.   DOI