• Title/Summary/Keyword: species Diversity

Search Result 4,459, Processing Time 0.034 seconds

Community Composition and Functional Feeding Groups of Aquatic Insects According to Stream Order from the Gapyeong Creek in Gyeonggi-do, Korea (경기도 가평천의 하순에 따른 수서곤충 군집조성과 섭식기능군)

  • Won, Doo-Hee;Hoang, Duc-Huy;Jin, Young-Hun;Hwang, Jeong-Mi;Bae, Yeon-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.1 s.102
    • /
    • pp.21-28
    • /
    • 2003
  • Community composition and functional feeding groups of aquatic insects according to stream order were investigated from the Gapyeong Creek, a typical mid-sized Korean stream in Gyeonggi -do, Korea, in April 2000. For field investigations, the main watercourse and three major tributaries of the stream that belong to stream order ll to Vll were divided into reaches (ca. $1{\sim}4$ km in distance). Aquatic insects were sampled from one or two sites each reach (total 30 sites) using a Surber sampler ($50{\times}50$cm, mesh 0.75 mm). As a result of the quantitative samplings(two Surber samplings at riffle and pool/run per site; total $2{\times}30$=60 Surber samplings) and additional qualitative samplings, a total of 164 species of aquatic insects in 103 genera, 54 families, and 8 orders were collected from the stream. Those aquatic insects were composed of Trichoptera (56spp.: 34.1%), Ephemeroptera (43 spp.: 26.2%), Diptera (25spp.: 15.2%), Plecoptera (23 spp.: 14.0%), Coleoptera (6 spp.: 3.7%), Odonata (6 spp.:3.7%), Hemiptera (3 spp.: 1.8%), and Megaloptera (2 spp.: 1.2%); EPT-group (122 spp.:74.4%) or EPT-group plus Diptera (147 spp.: 89.6%) occupied most of the aquatic insect community; relatively larger number of species occurred in the mid-stream reaches (order III-Vl). The quantitative samplings throughout the study sites yielded a total of 26,286 individuals of aquatic insects ($136{\sim}2522$ inds./0.5 $m^2$, mean 906.4inds./0.5 $m^2$) that belongs to Ephemeroptera (11,994 inds.: 45.6%), Diptera (8730 inds.:33.2%), Trichoptera (4123 inds.: 15.7%), Plecoptera (1213 inds.: 4.6%), Coleoptera (204 inds.: 0.8%), Odonata (13 inds.: 0.05%), Megaloptera (5 inds.: 0.02%), and Hemiptera (4inds.: inds.: 0.02%); average number of individuals of aquatic insects increased as the stream order increased: average numbers of individuals of Bllecoptera and Trichoptera decreased and increased, respectively, as the stream order increased. Tolerant species such as Chironomidae spp., Uracanthella rufa and Hydropsychidae spp. were particularly abundant in the down stream reaches (order Vll) . Species diversity indices (H`) and dominance indices (Dl) were relatively higher and lower, respectively, in the mid-stream reaches (order $IV{\sim}VI$). Shredders occupied the smallest partand collector-gatherers were most abundant among the functional feeding groups(FFGs); collector-filterers considerably increased in the down stream reaches (orders Vl and VII); scrappers were relatively evenly distributed throughout the stream reaches: predators were relatively more abundant in the uppermost stream reaches(order ll) . Overall, the characteristics of aquatic insect comminity and FFGs in the Gapyeong Creek are largely similar to those in the normal streams of temperate deciduous forest in the northern hemisphere that is explained by the river confineum concept.

Environmental Changes after Timber Harvesting in (Mt.) Paekunsan (백운산(白雲山) 성숙활엽수림(成熟闊葉樹林) 개벌수확지(皆伐收穫地)에서 벌출직후(伐出直後)의 환경변화(環境變化))

  • Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.4
    • /
    • pp.465-478
    • /
    • 1995
  • The objective of this study was to investigate the impacts of large-scale timber harvesting on the environment of a mature hardwood forest. To achieve the objective, the effects of harvesting on forest environmental factors were analyzed quantitatively using the field data measured in the study sites of Seoul National University Research Forests [(Mt.) Paekunsan] for two years(1993-1994) following timber harvesting. The field data include information on vegetation, soil mesofauna, physicochemical characteristics of soil, surface water runoff, water quality in the stream, and hillslope erosion. For comparison, field data for each environmental factor were collected in forest areas disturbed by logging and undisturbed, separately. The results of this study were as follows : The diversity of vegetational species increased in the harvested sites. However, the similarity index value of species between harvested and non-harvested sites was close to each other. Soil bulk density and soil hardness were increased after timber harvesting, respectively. The level of organic matter, total-N, avail $P_2O_5$, CEC($K^+$, $Na^+$, $Ca^{{+}{+}}$, $Mg^{{+}{+}}$) in the harvested area were found decreased. While the population of Colembola spp., and Acari spp. among soil mesofauna in harvested sites increased by two to seven times compared to those of non-harvested sites during the first year, the rates of increment decreased in the second year. However, those members of soil mesofauna in harvested sites were still higher than those of non-harvested sites in the second year. The results of statistical analysis using the stepwise regression method indicated that the diversity of soil mesofauna were significantly affected by soil moisture, soil bulk density, $Mg^{{+}{+}}$, CEC, and soil temperature at soil depth of 5(0~10)cm in the order of importance. The amount of surface water runoff on harvested sites was larger than that of non-harvested sites by 28% in the first year and 24.5% in the second year after timber harvesting. The level of BOD, COD, and pH in the stream water on the harvested sites reached at the level of the domestic use for drinking in the first and second year after timber harvesting. Such heavy metals as Cd, Pb, Cu, and organic P were not found. Moreover, the level of eight factors of domestic use for drinking water designated by the Ministry of Health and Welfare of Korea were within the level of the first class in the quality of drinking water standard. The study also showed that the amount of hillslope erosion in harvested sites was 4.77 ton/ha/yr in the first year after timber harvesting. In the second year, the amount decreased rapidly to 1.0 ton/ha/yr. The impact of logging on hillslope erosion in the harvested sites was larger than that in non-harvested sites by seven times in the first year and two times in the second year. The above results indicate that the large-scale timber harvesting cause significant changes in the environmental factors. However, the results are based on only two-year field observation. We should take more field observation and analyses to increase understandings on the impacts of timber harvesting on environmental changes. With the understandings, we might be able to improve the technology of timber harvesting operations to reduce the environmental impacts of large-scale timber harvesting.

  • PDF

A Study on the Characteristics and Management Plan of Old Big Trees in the Sacred Natural Sites of Handan City, China (중국 한단시 자연성지 내 노거수의 특성과 관리방안)

  • Xi, Su-Ting;Shin, Hyun-Sil
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.41 no.2
    • /
    • pp.35-45
    • /
    • 2023
  • First, The spatial distribution characteristics of old big trees were analyzed using ArcGIS figures by combining basic information such as species and ages of old big trees in Handan City, which were compiled by the local bureau of landscaping. The types of species, distribution by ages of trees, ownership status, growth status, and diversity status were comprehensively analyzed. Statistically, Styphnolobium, Acacia, Gleditsia, and Albizia of Fabaceae accounted for the majority, of which Sophora japonica accounted for the highest proportion. Sophora japonica is widely and intensively distributed to each prefecture and district in Handan city. According to the age and distribution, the old big trees over 1000 years old were mainly Sophora japonica, Zelkova serrata, Juniperus chinensis, Morus australis Koidz., Dalbergia hupeana Hance, Ceratonia siliqua L., and Pistacia chinensis, and Platycladus orientalis. Second, as found in each type of old big tree status, various types of old big tree status were investigated, the protection management system, protection management process, and protection management benefits were studied, and the protection of old big tree was closely related to the growth environment. Currently, the main driving force behind the protection of old big trees is the worship of old big trees. By depositing its sacredness to the old big tree and sublimating the natural character that nature gave to the old big tree into a guiding consciousness of social activities, nature's "beauty" and personality's "goodness" are well combined. The protection state of the old big tree is closely related to the degree of interaction with the surrounding environment and the participation of various cultures and subjects. In the process of continuously interacting with the surrounding environment during the long-term growth of old big trees, it seems that a natural sanctuary was formed around old big trees in the process of voluntarily establishing a "natural-cultural-scape" system involving bottom-up and top-down cross-regions, multicultural and multi-subjects. Third, China focused on protecting and recovering old big trees, but the protection management system is poor due to a lack of comprehensive consideration of historical and cultural values, plant diversity significance, and social values of old big trees in the management process. Three indicators of space's regional characteristics, property and protection characteristics, and value characteristics can be found in the evaluation of the natural characteristics of old giant trees, which are highly valuable in terms of traditional consciousness management, resource protection practice, faith system construction, and realization of life community values. A systematic management system should be supported as to whether they can be protected and developed for a long time. Fourth, as the perception of protected areas is not yet mature in China, "natural sanctuary" should be treated as an important research content in the process of establishing a nature reserve system. The form of natural sanctuary management, which focuses on bottom-up community participation, is a strong supplement to the current type of top-down nature reserve management in China. Based on this, the protection of old giant trees should be included in the form of a nature reserve called a natural monument in the nature reserve system. In addition, residents of the area around the nature reserve should be one of the main agents of biodiversity conservation.

Compazrison of Water Qualities and Biotic Effects of Three River Waters in Taegu Area (대구지방 하천의 수질특성과 수생물에 미치는 영향 비교)

  • Lyu, Seung-Won;Seung-Dal Song
    • Journal of environmental and Sanitary engineering
    • /
    • v.5 no.1
    • /
    • pp.7-13
    • /
    • 1990
  • The water environmental characters of the Nakdong River, Geumho River and Sin Stream, both before-flood (Aug. 24) and after-flood (Sept. 8), have been compared, and their effects on the growth of Spirodela polyrhiza Shleiden have been examined. Before the flood, the concentrations of most of the chemical components of the Geumho River were similar to those of the Sin Stream; (COD, 19.6~21.4; alkalinity, 177~183; $NH_4\;^+$, 20.7~24.4; $NO_3\;^-$, 3.9~4.3; $PO_\;4^{3-}$, 3.4~3.7; $Mg^{2+}$, 42; $Ca^{2+}$, 68.5~69.7; $Cl^-$, 90~92; $SiO_2$, 10.4~11.2; , 11~32; LAS, 3.0~3.8; , 0.007~0.010ppm) but much higher than those of the Nakdong River (30~40 fold for $NH_4\;^+$, , $PO_\;4^{3-}$ and LAS, and 2~5 fold for COD, alkalinity, $NO_3\;^-$, $Mg^{2+}$, Cl- and ). Especially in the Geumho River, Secchi disk transparency was very low (17cm) and DO was not detected. The flood caused significant increases in some chemical components: $NH_4\;^+$, 1.0;$NO_3\;^-$, 9.6; , 12.8 and , 5.4 ppm in the Nakdong River; DO, 1.0; $NO_2\;^-$, 0.92; $NO_3\;^-$, 22.2 and $SiO_2$, 17.6ppm in the Geumho River; DO, 3.0; $NO_2\;^-$, 1.4; $NO_3\;^-$, 22.2; SiO2$SiO_2$, 19.2 and , 25.0ppm in the Sin Stream. General species diversity index (H) of phytoplankton community in the Nakdong River, Geumho River and Sin Stream before flood was 3.1, 2.7 and 1.6, respectively. After the flood, the phytoplankton growth was highly sparse in each river water, hence indices have no significance. The growth of S. polyrhiza was enhanced in Geumho River water (max. RGR=26%/day), while it ceased within 7days in Nakdong River water.

  • PDF

The Limnological Survey and Phosphorus Loading of Lake Hoengsung (횡성호의 육수학적 조사와 인부하)

  • Kwon, Sang-Yong;Kim, Bom-Chul;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.411-422
    • /
    • 2004
  • A limnological survey was conducted in a reservoir, Lake Hoengsung located in Kangwondo, Korea, from July 2000 to September 2001 on the monthly basis. Phosphorus loading from the watershed was estimated by measuring total phosphorus concentration in the main tributary. Secchi disc transparency, epilimnetic (0-5 m) turbidity, chlorophyll a (Chl-a), total phosphorus (TP), total nitrogen(TN) and silica concentration were in the range of 0.9-3.5 m, 0.1-8.5 NTU, 0.3-32.4 mgChl $m^{-3}$, 5-46 mgP $m^{-3}$, 0.83-3.55 mgN $L^{-1}$ and 0.5-9.6 mgSi $L^{-1}$, respectively. Green algae and cyanobacteria dominated phytoplankton community in warm seasons, from July through October, 2000. In July a green alga (Scenedesmus sp.) was dominant with a maximum cell density of 10,480 cells mL. Cyanobacteria (Microcystics sp.) dominated in August and September with cell density of 3,492 and 295 cells mL ,respectively. Species diversity of phytoplankton was highest (2.22) in July. The trophic state of the reservoir can be classified as eutrophic on the basis of TP, Chl-a, and Secchi disc transparency. Because TP concentration was high in flood period, most of phosphorus loading was concentrated in rainy season. TP loading was calculated by multiplying TP and flow rate. The dam managing company measured inflow rate of the reservoir daily, while TP was measured by weekly surveys. TP of unmeasured days was estimated from the empirical relationship of TP and the flow rate of the main tributary; $TP=5.59Q^{0.45}\;(R^2=0.47)$. Annual TP loading was calculated to be 4.45 tP $yr^{-1}$, and the areal P loading was 0.77 gP $m^{-2}\;yr^{-1}$ which is similar to the critical P loading for eutrophication by Vollenweider's phosphorus model, 0.72 gP $m^{-2}\;yr^{-1}$.

Effect of the Anthracnose Resistant Transgenic Chili Pepper on the Arthropod Communities in a Confined Field (야외 격리 포장에서 유전자 변형 탄저병 저항성 PepEST 고추가 절지동물 군집에 미치는 영향)

  • Yi, Hoon-Bok;Kwon, Min-Chul;Park, Ji-Eun;Kim, Chang-Gi;Park, Kee-Woong;Lee, Bum-Kyu;Kim, Hwan-Mook
    • Korean Journal of Environmental Biology
    • /
    • v.25 no.4
    • /
    • pp.326-335
    • /
    • 2007
  • This study was conducted to assess the environmental risks of anthracnose resistant transgenic chili peppers with the PepEST gene on non-target organisms in the agroecosystem environments during the chili pepper growing seasons in 2006. We quantitatively collected arthropods assemblages living on leaves and flowers of chili peppers on June 20, July 25, and August 25 by using an insect vacuum collector to compare the patterns of arthropod community structures between non-transgenic chili peppers (nTR, WT512) and anthracnose resistant transgenic chili peppers (TR, line 68). We found the seasonal difference with the highest species richness and Shannon's diversity in July's sampling among the growing seasons (P<0.05) and each sampling season showed the different arthropod community composition. We also found there was no statistical difference between the two types of crops, nTR and TR, at each sampling time (P>0.05). The significance level of arthropod community showed that there were lots of seasonal difference of functional groups as well as taxa but only the herbivore group in the functional groups was significantly different for the types of plants (P<0.05). So, we further examined the herbivore groups to find any potential damage and identified the possibility of herbivorous damage from some herbivores, grasshoppers, aphids and thrips. Although we couldn't find any adverse effects from the environmental risk assessment between the arthropod community structures on two types of plants from our results, we should keep working for the environmental risk assessment because of the herbivorous potential risk possibility.

Study on the Community Structure of Sublittoral Meiofauna in the Barents Sea in Summer 2002, Arctic Ocean (2002년 하계 북극 바렌츠해 연안지역의 중형저서생물 군집 구조에 관한 연구)

  • Lee Kang Hyun;Chung Kyung-Ho;Kang Sung-Ho;Lee Wonchoel
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.3 s.59
    • /
    • pp.257-268
    • /
    • 2005
  • Meiofauna community was surveyed in the Arctic Ocean. Sediment samples were collected from six stations in the east Barents Sea and from five stations in Kongsfjorden, Svalbard during summer 2002. Eight taxa of meiofauna were identified in the Barents Sea. Meiofauna abundance ranged from 245 to 906 indiv.10 $cm^{-2}$ (mean 580 indiv.10 $cm^{-2}$) and total biomass varied from 23 and 404 ${\mu}gC10cm^{-2}$ (mean 184 ${\mug}C10cm^{-2}$) in the Barent Sea. Nematode predominated in meiofauna comprising $95.2\%$ of total abundance and $66.4\%$ of biomass. Copepods, polycheats and sarcomastigophonans were also dominant in the study area. Nine taxa of meiofauna were identified in Kongsfiorden. Meiofauna abundance ranged from 103 to 513 indiv.10 $cm^{-2}$ (mean 292 indiv.10 $cm^{-2}$) and biomass varied from 13 and 196{\mu}gC10\;cm^{-2}$ (mean 94{\mu}gC10\;cm^{-2}$) in the Kongsfiorden. Nematodes predominated in meiofauna, comprising $64.1\%$ of abundance and $64.3\%$ biomass. Copepods, polychaets, and kinorhyncha were also dominant in the study area. The meiofauna abundances from both the study areas well match with the previous reports from the various regions including the temperate areas. However the occurred taxa in the present study are only a half comparing with the reports from temperate zone. Meiofauna abundance, biomass, diversity index and species richness were much higher than in the coastal which were strongly affected by fresh water run off in the Barents Sea. The stations affected by chlorophyll had high abundance and biomass, but low diversity index and spices richness in Kongsfiorden.

Changes of Vegetation Structure in Naejangsan District, Najangsan National Park for Twenty Years(1991~2010), Korea (내장산국립공원 내장산지구 20년간(1991~2010년) 식생구조 변화 연구)

  • Bae, Ji-Yoon;Kim, Ji-Suk;Lee, Kyong-Jae;Kim, Jong-Yup;Yeum, Jung-Hun
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.1
    • /
    • pp.99-112
    • /
    • 2013
  • This study aims to show the changes of characteristics of vegetation structure for 20 years(1991~2010) in Naejangsan National Park. As a result of analysis of actual vegetation, the mixed community of Quercus variabilis and Quercus serrata was distributed with 56.1%, and Q. variabilis community showed in southern steep slope with 17.6%. Pinus densiflora community(5.8%) was observed on the ridge and Carpinu tschonoskii community distributed in the slope of the valley with 6.6%. Zelkova serrata and Prunus sargentii community were distributed in valley. The classification by TWINSPAN, ordination by DCA considering importance percentage and property of vegetation class were divided into 4 communities, which are community I(P. densiflora-Q. variabilis community), community II(Q. variabilis community), community III(C. tschonoskii community) and community IV(Mixed deciduous broad-leaved trees community). The age of Pinus densiflora was 32years old and Q. serrata was 36 years old in the community I, that of Q. variabilis was 64 years old in the community II, Q. serrata was 46 years old and C. tschonoskii was 45 years old in the community III, and Acer palmatum was 54 years old and Cornus controversa was 47 years old in the community IV. As the result of Shannon's index of species diversity, the community Iwas ranged from 0.9751 to 1.4199, community II was ranged from 1.0765 to 1.3278, community III was ranged from 1.0353 to 1.2881, and community IV was ranged from 1.1412 to 1.3807. The change of vegetation structure analyzed through the comparison with results of studies carried out 20 years ago were natural selection of P. densiflora, expansion of Quercus spp. and increase of C. tschonoskii. Especially, A. palmatum is dominated by Q. variabilis in canopy layer like the result of study 20 years ago. A. palmatum was analysed by 14.6% in the canopy layer of only mixed deciduous broad-leaved trees community. As a result of analysis of habitat property of Q. variabilis and A. palmatum, Q. variabilis was distributed in dry area with the low value of pH, O.M., exchangeable cations and Avail. P, and A. palmatum was located in the wet valley with huge value of nourishment. The tendency of reduction of bio-diversity by Sasa borealis is same as previous study but, the distributed areas were reduced in Naejangsan area.

Comparison of gut microbial diversity of breast-fed and formula-fed infants (모유수유와 분유수유에 따른 영아 장내 미생물 군집의 특징)

  • Kim, Kyeong Soon;Shin, Jung;Sim, JiSoo;Yeon, SuJi;Lee, Pyeong An;Chung, Moon Gyu
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.268-273
    • /
    • 2019
  • The intestinal microbiomes vary according to the factors such environment, age and diet. The purpose of this study was to compare the gut microbial diversity between Korean infants receiving breast-fed milk and formula-fed milk. We analyzed microbial communities in stool samples collected from 80 Korean infants using next generation sequencing. Phylum level analysis revealed that microbial communities in both breast-fed infants group (BIG) was dominated by Actinobacteria ($74.22{\pm}3.48%$). Interestingly, the phylum Actinobacteria was dominant in formula-fed infants group A (FIG-A) at $73.46{\pm}4.12%$, but the proportions of phylum Actinobacteria were lower in formulafed infants group B and C (FIG-B and FIG-C) at $66.52{\pm}5.80%$ and $68.88{\pm}4.33%$. The most abundant genus in the BIG, FIG-A, FIG-B, and FIG-C was Bifidobacterium, comprising $73.09{\pm}2.31%$, $72.25{\pm}4.93%$, $63.81{\pm}6.05%$, and $67.42{\pm}5.36%$ of the total bacteria. Furthermore, the dominant bifidobacterial species detected in BIG and FIG-A was Bifidobacterium longum at $68.77{\pm}6.07%$ and $66.85{\pm}4.99%$ of the total bacteria. In contrast, the proportions of B. longum of FIG-B and FIG-C were $58.94{\pm}6.20%$ and $61.86{\pm}5.31%$ of the total bacteria. FIG-A showed a community similar to BIG, which may be due to the inclusion of galactooligosaccharide, galactosyllactose, synergy-oligosaccharide, bifidooligo and improvement material of gut microbiota contained in formula-milk. We conclude that 5-Bifidus factor contained in milk powder promotes the growth of Bifidobacterium genus in the intestines.

Distributional Characteristics and Population Substantiality of Viola mirabilis L.; Rear edge Population in Korea (한국이 후방가장자리 개체군인 넓은잎제비꽃(Viola mirabilis L.)의 분포특성과 지속가능성)

  • Chae, Hyun-Hee;Kim, Young-Chul;An, Won-Gyeong;Kwak, Myoung-Hai;Nam, Gi-Heum;Lee, Kyu-Song
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.4
    • /
    • pp.422-439
    • /
    • 2019
  • The rear edge population is considered to have low genetic diversity and high risk of extinction according to a highly isolated distribution. However, the rear edge population is observed to have persisted for an extended period despite the low genetic diversity. As such, it is necessary to understand the ecological process involved in the persistence of the population. Viola mirabilis L. in Korea is considered the rear edge population from the perspective of the worldwide distribution. We surveyed the distribution range of V. mirabilis, which shows the isolated distribution in the central area of Korea, to find out the factors of its persistence. Next, we investigated and accessed the vegetational pattern of habitats, soil environment, phenology, self-compatibility, population structure, and extinction risk factors observed in the distribution area. V. mirabilis was distributed in the understory of the deciduous forest, planted forest of the deciduous conifer and deciduous broad-leaved trees, shrubland, and grassland in the limestone area. We also observed the re-establishment of seedlings in the population, and most of them showed a stable population structure. For chasmogamous flowers, the visit by pollinators has a significantly positive relationship with the production of fruits. However, we found that the production of the cleistogamous flowers was more numerous in all studied populations and that only the cleistogamous flowers were produced despite a more substantial plant size in some populations. The plant size was more related to the production of the cleistogamous flowers than that of the chasmogamous flowers. Accordingly, the cleistogamous flowers significantly contributed to seedling recruitment in the population. We found that the production of the chasmogamous flowers and the cleistogamous flowers did not have a correlation with the factors of the soil analysis except for phosphoric acid. V. mirabilis showed the self-incompatibility characteristics most likely due to the production capability of the cleistogamous flowers. Potential extinction risk factors observed in the distribution area was included the development of limestone mine, the expansion of agricultural fields, and the construction of houses. Although V. mirabilis showed an isolated distribution in the limestone area in the Korean peninsula, it showed a diverse distribution in a wide habitat environment ranging from the grassland to the understory of the trees with relatively low canopy closure rate. Moreover, we concluded that the persistence of the population was possible if we can maintain the current state of multiple populations and stable population structure.