• Title/Summary/Keyword: spatial statistics

Search Result 654, Processing Time 0.035 seconds

A Study on the Edge Enhancement of X-ray Images Generated by a Gas Electron Multiplier Chamber

  • Moon, B.S.;Coster, Dan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.155-160
    • /
    • 2004
  • In this paper, we describe the results of a study on the edge enhancement of X-ray images by using their fuzzy system representation. A set of gray scale X-ray images was generated using the EGS4 computer code. An aluminum plate or a lead plate with three parallel strips taken out has been used as the object with the thickness and the width of the plate, and the gap between the two strips varied. We started with a comparative study on a set of the fuzzy sets for their applicability as the input fuzzy sets for the fuzzy system representation of the gray scale images. Then we describe how the fuzzy system is used to sharpen the edges. Our algorithm is based on adding the magnitude of the gradient not to the pixel value of concern but rather to the nearest neighboring pixel in the direction of the gradient. We show that this algorithm is better in maintaining the spatial resolution of the original image after the edge enhancement.

Analysis of Spatial Distribution of Hypertension Prevalence and Its Related Factors based on the Model of Social Determinants of Health

  • Kim, Min Jung;Park, Nam Hee
    • Research in Community and Public Health Nursing
    • /
    • v.29 no.4
    • /
    • pp.414-428
    • /
    • 2018
  • Purpose: The purpose of this study is to identify the spatial distribution of hypertension prevalence and to investigate individual and regional-level factors contributing to the prevalence of hypertension in the region. Methods: This study is a cross-sectional research using the 2015 Community Health Survey. Total 64,473 people from 7 metropolitan cities were used for the final analysis. Geoda program was adopted to identify the regional distribution of hypertension prevalence and analyzed by descriptive statistics, one-way ANOVA and correlation analysis using SPSS statistics 23.0 program. Multi-level analysis was performed using SPSS (GLMM). Results: The prevalence of hypertension was related to individual level factors such as age, monthly household income, normal salt intake, walking practice days, and regional level factors including number of doctors per 10,000 population, number of parks, and fast food score. Besides, regional level factors were associated with hypertension prevalencies independently without the effects of individual level factors even though the influences of individual level factors ware larger than those of regional factors. Conclusion: Respectively, both individual and regional level factors should be considered in hypertension intervention programs. Also, a national level research is further required by exploring various environmental factors and those influences relating to the hypertension prevalence.

Interval prediction on the sum of binary random variables indexed by a graph

  • Park, Seongoh;Hahn, Kyu S.;Lim, Johan;Son, Won
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.3
    • /
    • pp.261-272
    • /
    • 2019
  • In this paper, we propose a procedure to build a prediction interval of the sum of dependent binary random variables over a graph to account for the dependence among binary variables. Our main interest is to find a prediction interval of the weighted sum of dependent binary random variables indexed by a graph. This problem is motivated by the prediction problem of various elections including Korean National Assembly and US presidential election. Traditional and popular approaches to construct the prediction interval of the seats won by major parties are normal approximation by the CLT and Monte Carlo method by generating many independent Bernoulli random variables assuming that those binary random variables are independent and the success probabilities are known constants. However, in practice, the survey results (also the exit polls) on the election are random and hardly independent to each other. They are more often spatially correlated random variables. To take this into account, we suggest a spatial auto-regressive (AR) model for the surveyed success probabilities, and propose a residual based bootstrap procedure to construct the prediction interval of the sum of the binary outcomes. Finally, we apply the procedure to building the prediction intervals of the number of legislative seats won by each party from the exit poll data in the $19^{th}$ and $20^{th}$ Korea National Assembly elections.

Statistical analysis issues for neuroimaging MEG data (뇌영상 MEG 데이터에 대한 통계적 분석 문제)

  • Kim, Jaehee
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.161-175
    • /
    • 2022
  • Oscillatory magnetic fields produced in the brain due to neuronal activity can be measured by the sensor. Magnetoencephalography (MEG) is a non-invasive technique to record such neuronal activity due to excellent temporal and fair amount of spatial resolution, which gives information about the brain's functional activity. Potential utilization of high spatial resolution in MEG is likely to provide information related to in-depth brain functioning and underlying factors responsible for changes in neuronal waves in some diseases under resting state or task state. This review is a comprehensive report to introduce statistical models from MEG data including graphical network modelling. It is also meaningful to note that statisticians should play an important role in the brain science field.

Expansion of Private Tutoring Market for Adults according to Labor Market Changes and the Geographical Characteristics (노동시장의 구조 변화에 따른 성인 대상 사교육 시장의 성장과 공간적 함의)

  • Park, Sohyun;Lee, Keumsook
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.402-419
    • /
    • 2014
  • This study attempts to investigate the spatial characteristics of private tutoring markets for adults which have been expanded rapidly with labor market changes in Korea. In particular, For the purpose, we examine thoroughly various indies of labor markets and private tutoring markets for adults in Korea in first and then analyze the spatial characteristics. We classify private tutoring institutes for adults into two categories by job-statuses and education levels, and analyze the spatial distribution patterns of the attendants of the classes. In order to understand the spatial characteristic of their distributions, we distinguish whether there exist the spatial autocorrelation or not by applying Moran's I values for each categories in first. We also examine the spatial cluster patterns by Hot spots analysis utilizing $G^*$ statistics. Multiple linear regression models are developed for each category to explain the relationships between the spatial distributions of private tutoring institutes and geographical variables.

  • PDF

Analysis of Relation Between Criminal Types and Spatial Characteristics in Urban Areas (도심지역의 범죄 종류와 공간적 특성 관계분석)

  • Cha, Gyeong Hyeon;Kim, Kyung Ho;Son, Ki Jun;Kim, Sang Ji;Lee, Dong Chang;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.1
    • /
    • pp.6-11
    • /
    • 2015
  • In this paper, we analyzed current states and spatial characteristics of crime occurring in A city of Colombia using big data of crime. The analysis draws on the crime statistics of Colombia National Police Agency from 2013 January to September. We also investigated spatial autocorrelation of crime using global and local Moran's Index. Spatial autocorrelation analysis shows significant spatial autocorrelation in the high frequency of crime. Global Moran's I analysis indicates that there are statistically significant value of crime area. Using local Moran's Index analysis, we also implement Local Indicators of Spatial Association(LISA) map and hot spot analysis helps us identify crime distribution.

High Incidence of Breast Cancer in Light-Polluted Areas with Spatial Effects in Korea

  • Kim, Yun Jeong;Park, Man Sik;Lee, Eunil;Choi, Jae Wook
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.361-367
    • /
    • 2016
  • We have reported a high prevalence of breast cancer in light-polluted areas in Korea. However, it is necessary to analyze the spatial effects of light polluted areas on breast cancer because light pollution levels are correlated with region proximity to central urbanized areas in studied cities. In this study, we applied a spatial regression method (an intrinsic conditional autoregressive [iCAR] model) to analyze the relationship between the incidence of breast cancer and artificial light at night (ALAN) levels in 25 regions including central city, urbanized, and rural areas. By Poisson regression analysis, there was a significant correlation between ALAN, alcohol consumption rates, and the incidence of breast cancer. We also found significant spatial effects between ALAN and the incidence of breast cancer, with an increase in the deviance information criterion (DIC) from 374.3 to 348.6 and an increase in $R^2$ from 0.574 to 0.667. Therefore, spatial analysis (an iCAR model) is more appropriate for assessing ALAN effects on breast cancer. To our knowledge, this study is the first to show spatial effects of light pollution on breast cancer, despite the limitations of an ecological study. We suggest that a decrease in ALAN could reduce breast cancer more than expected because of spatial effects.

Spatial Association of Population Concentration in Seoul Metropolitan Area (서울대도시권 인구집중의 공간적 연관성 연구)

  • Park, Jane;Chang, Hoon;Kim, Jy So
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.391-397
    • /
    • 2008
  • This paper analyzes the spatial patterns of population distribution in Seoul Metropolitan Area in terms of spatial association using spatial statistics and spatial exploratory technique. Our empirical analysis based on global index shows that, in Seoul Metropolitan Area, the population had been distributed with strong positive spatial association over the period of 1980-2005. It implies that the population of each region is affected by the population distribution of adjacent regions. In addition, the analysis using local index was conducted for detecting the local patterns of spatial association, and the result shows that the clusters of population had been moved in the direction of West(Incheon and Bucheon) and South(Anyang and Seongnam) of Seoul where a large scale of lands or towns were developed over the period. These results will be the preliminary data for establishing management and development plans of Seoul Metropolitan Area.

Spatial clustering of PM2.5 concentration and their characteristics in the Seoul Metropolitan Area for regional environmental planning (수도권 환경계획을 위한 초미세먼지 농도의 공간 군집특성과 고농도지역 분석)

  • Lim, Chul-Hee;Park, Deuk-Hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.1
    • /
    • pp.41-55
    • /
    • 2022
  • Social interest in the fine particulate matter has increased significantly since the 2010s, and various efforts have been made to reduce it through environmental plans and policies. To support such environmental planning, in this study, spatial cluster characteristics of fine particulate matter (PM2.5) concentrations were analyzed in the metropolitan area to identify high-risk areas spatially, and the correlation with local environmental characteristics was also confirmed. The PM2.5 concentration for the recent 5 years (2016-2020) was targeted, and representative spatial statistical methods Getis-Ord Gi* and Local Moran's I were applied. As a result of the analysis, the cluster form was different in Getis-Ord Gi* and Local Moran's I, but they show high similarity in direction, therefore complementary results could be obtained. In the high concentration period, the hotspot concentration of the Getis-Ord Gi* method increased, but in Local Moran's I, the HH region, the high concentration cluster, showed a decreasing trend. Hotspots of the Getis-Ord Gi* technique were prominent in the Pyeongtaek-Hwaseong and Yeoju-Icheon regions, and the HH cluster of Local Moran's I was located in the southwest, and the LL cluster was located in the northeast. As in the case of the metropolitan area, in the results of Seoul, there was a phenomenon of division between the northeast and southwest regions. The PM2.5 concentration showed a high correlation with the elevation, vegetation greenness and the industrial area ratio. During the high concentration period, the relation with vegetation greenness increased, and the elevation and industrial area ratio increased in the case of the annual average. This suggests that the function of vegetation can be maximized at a high concentration period, and the influence of topography and industrial areas is large on average. This characteristic was also confirmed in the basic statistics for each major cluster. The spatial clustering characteristics of PM2.5 can be considered in the national land and environmental plan at the metropolitan level. In particular, it will be effective to utilize the clustering characteristics based on the annual average concentration, which contributes to domestic emissions.

Analysis of regional type according to spatial correspondence between heat wave vulnerable areas and health damage occurrence (폭염 취약지역과 건강 피해 발생의 공간적 일치성에 따른 지역 유형 분석)

  • Hee-Soo HWANG;Ji Yoon CHOI;Jung Eun KANG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.1
    • /
    • pp.89-113
    • /
    • 2023
  • This study aimed to identify heat wave vulnerable areas and discuss spatial typology and policy directions through spatial coincidence analysis of heat wave damage. By utilizing the climate change vulnerability assessment of the Intergovernmental Panel on Climate Change (IPCC) and Spatial Statistics Comparison Analysis, this study examined cities, counties, and districts in South Korea for five years (2015-2019), including 2018, when the heat wave was most extreme. It was determined that the number of heat wave days (exposure) was the most impactful among various factors for heat wave vulnerability. Sensitivity and adaptive capacity to heat waves were found to vary according to regional characteristics. The relationship between heat wave vulnerability and damage was categorized into four types through spatial coherence. Hot to Hot and Cold to Cold types have a positive relationship between vulnerability and damage, while Hot to Cold and Cold to Hot types have a negative relationship. The findings suggest that since different types of regions have distinct characteristics and conditions, policies and research for improvement should be directed to address each region separately. This study may be used as basic data for establishing heat-related policies in the future, as it categorizes regions by considering both heat vulnerability and damage and examines the direction of response by type.