DOI QR코드

DOI QR Code

Statistical analysis issues for neuroimaging MEG data

뇌영상 MEG 데이터에 대한 통계적 분석 문제

  • Kim, Jaehee (Department of Statistics, Duksung Women's University)
  • Received : 2021.11.24
  • Accepted : 2021.12.24
  • Published : 2022.02.28

Abstract

Oscillatory magnetic fields produced in the brain due to neuronal activity can be measured by the sensor. Magnetoencephalography (MEG) is a non-invasive technique to record such neuronal activity due to excellent temporal and fair amount of spatial resolution, which gives information about the brain's functional activity. Potential utilization of high spatial resolution in MEG is likely to provide information related to in-depth brain functioning and underlying factors responsible for changes in neuronal waves in some diseases under resting state or task state. This review is a comprehensive report to introduce statistical models from MEG data including graphical network modelling. It is also meaningful to note that statisticians should play an important role in the brain science field.

뇌활동으로 발생하는 전기신호는 다시 자기신호로 유도되는데 센서로 측정한 것을 뇌자도(magnetoencephalography, MEG)라고 한다. MEG 기술은 비접촉, 비침습적인 측정방법이고 시간분해능과 공간분해능력이이 우수하기 때문에 뇌의 기능적인 정보를 얻는데 유용하게 사용될 수 있다. 또한 MEG 신호를 측정하고 분석하여 뇌신경전류의 활동을 이해할 수 있고 나아가 정밀한 뇌기능 연구가 가능하다. 본 연구에서는 뇌 활동(brain activity) 현상에 관한 궁극적 정보를 얻기위해 MEG 데이터의 특성을 설명하고 통계적 문제를 다루어 앞으로 뇌연구에 통계학의 필요성과 뇌정보학의 중요성을 강조하고자 한다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 연구 기초연구실 (No. 2021R1A4A5028907) 지원과 기본연구 (No. 2021R1F1A1054968) 지원을 받아 수행한 연구 과제입니다.

References

  1. Babiloni F, Mattia D, Babiloni C, et al. (2004). Multimodal integration of EEG, MEG and fMRI data for the solution of the neuroimage puzzle, Magnetic Resonance Imaging, 22, 1471-1476. https://doi.org/10.1016/j.mri.2004.10.007
  2. Bassett DS and Sporns O (2017). Network neuroscience, Nature Neuroscience, 20, 353-364. https://doi.org/10.1038/nn.4502
  3. Bianconi G (2019). Multilayer Networks, Oxford, London.
  4. Bolstad A, Veen BDV, and Nowak R (2011). Causal network inference via group sparse regularization, IEEE Transactions on Signal Processing, 59, 2628-2641. https://doi.org/10.1109/TSP.2011.2129515
  5. Bowman FD, Zhang L, Derado G, and Chen S (2012). Determining functional connectivity using fMRI data with diffusion-based anatomical weighting, NeuroImage, 62, 1769-1779. https://doi.org/10.1016/j.neuroimage.2012.05.032
  6. Brillinger DR (2001). Time Series: Data Analysis and Theory, SIAM, New York.
  7. Brookes MJ, Hale JR, Zumer JM et al. (2011a). Measuring functional connectivity using MEG: methodology and comparison with fcMRI, NeuroImage, 56, 1082-1104. https://doi.org/10.1016/j.neuroimage.2011.02.054
  8. Brookes MJ, Woolrich M, Luckhoo H et al. (2011b). Investigating the electrophysiological basis of resting state networks using magnetoencephalography. In Proceedings of the National Academy of Sciences of the United States of America, 16.
  9. Brookes MJ, Tewarie PK, Hunt BAE, et al. (2016). A multi-layer network approach to MEG connectivity analysis, Neuroimage, 132, 425-438. https://doi.org/10.1016/j.neuroimage.2016.02.045
  10. Bulmore E (2016). Fundamentals of Brain Network Analysis, Academic Press, London.
  11. Cabral J, Luckhoo H, Woolrich M, et al. (2014). Exploring mechanisms of spontaneous functional connectivity in MEG: How delayed network interactions lead to structured amplitude envelopes of band-pass filtered oscillations, NeuroImage, 90, 423-435. https://doi.org/10.1016/j.neuroimage.2013.11.047
  12. Cassidy B, Rae C, and Solo V (2014), Brain activity: Connectivity, sparsity, and mutual information, IEEE Transactions on Medical Imaging, 34, 846-860. https://doi.org/10.1109/TMI.2014.2358681
  13. Chella F, Marzetti L, Stenroos M, Parkkonen L, Ilmoniemi RJ, Romani GL, and Pizzella V (2019). The impact of improved MEG-MRI co-registration on MEG connectivity analysis, Neuroimage, 197, 354-367. https://doi.org/10.1016/j.neuroimage.2019.04.061
  14. Chen SY, He ZP, Han XY, et al. (2019). How big data and high-performance computing drive brain science, Genomics Proteomics & Bioinformatics, 17.
  15. Cribben I, Haraldsdottir R, Atlas LY, Wager TD, and Lindquist MA (2012). Dynamic connectivity regression: Determining state-related changes in brain connectivity, NeuroImage, 61, 907-920. https://doi.org/10.1016/j.neuroimage.2012.03.070
  16. Dash D, Ferrari P, and Wang J (2020). Decoding imagined and spoken phrases from non-invasive neural (MEG) signals, Frontiers in Neuroscience, 07.
  17. Dharmaprani D, Nguyen HK, Lewis TW, DeLosAngeles D, Willoughby JO, and Pope KJ (2016). A comparison of independent component analysis algorithms and measures to discriminate between EEG and artifact components, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 825-828.
  18. Florin E and Baillet S (2015). The brain's resting-state activity is shaped by synchronized cross-frequency coupling of neural oscillations, NeuroImage, 111, 26-35. https://doi.org/10.1016/j.neuroimage.2015.01.054
  19. Foley E, Cerquiglini A, Cavanna A, Nakubulwa MA, Furlong PL, Witton C, and Seri S (2014). Magnetoencephalography in the study of epilepsy and consciousness, Epilepsy and Behavior 30, 38-42. https://doi.org/10.1016/j.yebeh.2013.09.005
  20. Fornito A, Zalesky A, and Bullmore E (2016). Fundamentals of brain network analysis, Elsevier Academic Press.
  21. Fornito A, Zalesky A, Pantelis C, and Bullmore ET (2012). Schizophrenia, neuroimaging and connectomics, NeuroImage, 62, 2296-2314. https://doi.org/10.1016/j.neuroimage.2011.12.090
  22. Friston KJ, Frith CD, Liddle PF, and Frackowiak RSJ (1993). Functional connectivity: the principal-component analysis of large (PET) data sets, Journal of Cerebral Blood Flow & Metabolism 13 5-14. https://doi.org/10.1038/jcbfm.1993.4
  23. Friston KJ (2005). Models of brain function in neuroimaging, Annual Review of Psychology, 56, 57-87 https://doi.org/10.1146/annurev.psych.56.091103.070311
  24. Friston KJ (2011). Functional and effecive connectivity: a Review, Brain Connectivity, 1, 13-36. https://doi.org/10.1089/brain.2011.0008
  25. Georopoulos AP and Karageorgiou E (2008). Neurostatistics: Applications, challenges and expectations, Statistics in Medicine, 27, 407-417. https://doi.org/10.1002/sim.3137
  26. Golmohammadi M, Torbati AH, Diego SL, Obeid I, and Picone J (2019). Automatic analysis of EEGs using big data and hybrid deep learning architectures, Frontiers in Human Neuroscience, 13.
  27. Greenblatt RE, Pflieger ME, Ossadtchi AE (2012). Connectivity measures applied to human brain electrophysiological data, Journal of Neuroscience Methods, 207, 1-16. https://doi.org/10.1016/j.jneumeth.2012.02.025
  28. Gupta D (2011). Space-time network connectivity and cortical activations preceding spike wave discharges in human absence epilepsy: a MEG study, Medical & Biological Engineering & Computing , 49, 555-565. https://doi.org/10.1007/s11517-011-0778-3
  29. Hastie T, Tibshirani R, and Wainwright M (2015). Statistical Learning with Sparsity: The Lasso and Generalization, CRC Press, New York.
  30. Ikeda S and Toyama K (2000). Independent component analysis for noisy data-MEG data analysis, Neural Networks, 13, 1063-1074. https://doi.org/10.1016/S0893-6080(00)00071-X
  31. Iwasaki M, Nakasato N, Shamoto H, et al. (2002). Surgical implications of neuromagnetic spike localization in temporal lobe epilepsy, Epilepsia, 43, 415-424. https://doi.org/10.1046/j.1528-1157.2002.30801.x
  32. Jirsa VK (2004). Connectivity and dynamics of neural information processing, Neuroinformatics, 4, 183-204. https://doi.org/10.1385/NI:2:2:183
  33. Kim J, Jeong W, and Chung CK (2021). Dynamic functional connectivity change-point detection with random matrix theory inference, Frontiers in Neuroscience, https://doi.org/10.3389/fnins.2021.565029
  34. Kloppel S, Stonnington CM, Barnes J, et al. (2008). Accuracy of dementia diagnosis: A direct comparison between radiologists and a computerized method, Brain, 131, 2969-2974. https://doi.org/10.1093/brain/awn239
  35. Kolaczyk ED (2009). Statistical Analysis of Network Data, Springer, New York.
  36. Kostas D, Pang EW, and Rudzicz F (2019). Machine learning for MEG during speech tasks, Scientific Reports, 9.
  37. Lee H, Kang H, Chung MK, Kim B, and Lee DS (2012). Persistent brain network homology from the perspective of dendrogram, IEEE Trans Med Imaging, 31, 2267-2277. https://doi.org/10.1109/TMI.2012.2219590
  38. Li K, Guo L, Niea J, Li G, and Liub T (2009). Review of methods for functional brain connectivity detection using fMRI, Computerized Medical Imaging and Graphics, 33, 131-139. https://doi.org/10.1016/j.compmedimag.2008.10.011
  39. Lindquist MA, Xu Y, Nebel MB, and Caffo BS (2014). Evaluating dynamic bivariate correlations in resting-state fMRI:A comparison study and a new approach, NeuroImage, 101, 531-546. https://doi.org/10.1016/j.neuroimage.2014.06.052
  40. Lopez-Sanz D, Serrano N, and Maestu F (2018). The Role of magnetoencephalography in the early stages of alzheimer's disease, Frontiers in Neuroscience, 12.
  41. Luckhoo H, Hale JR, Stokes MG, Nobre AC, and Morris PG (2012). Inferring task-related networks using independent component analysis in magnetoencephalography, NeuroImage, 62, 530-541. https://doi.org/10.1016/j.neuroimage.2012.04.046
  42. Mandal PK, Banerjee A, Tripathi M, and Sharma A (2018). A comprehensive review of MEG studies for brain functionality in healthy aging and alzheimer's disease(AD), Frontiers in Computational Neuroscience, 12.
  43. Maestu F, Garcia-Segura J, Ortiz T, et al. (2005). Evidence of biochemical and biomagnetic interactions in Alzheimer's disease: an MEG and MR spectroscopy study, Dementia and Geriatric Cognitive Disorders, 20, 145-152. https://doi.org/10.1159/000087062
  44. Monti MM (2011). Statistical analysis of fMRI time-series: a critical review of the GLM approach, Frontiers in Human Neuroscience, 18.
  45. Muthukumaraswamy SD (2013). High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations, Frontiers in Human Neuroscience, 7.
  46. Niso G, Rogers C, Moreau JT, et al. (2016). OMEGA: The Open MEG Archive, NeuroImage, 124, 1182-1187. https://doi.org/10.1016/j.neuroimage.2015.04.028
  47. Pantazis D and Adler A (2021). MEG source localization via deep learning, Sensors (Basel), 21. https://doi.org/10.3390/s21010054
  48. Pourahmadi M (2013). High-dimensional covariance estimation, Wiley, New York.
  49. Rajesh KK, Donna LM, Lauren EL, Mark RP, Heather MW, Rishi D, and Christi PH (2011). Probing the brain in autism using fMRI and diffusion tensor imaging, Journal of Visualized Experiments, 55, 3178.
  50. Ramgopal S, Thome-Souza S, Jackson M, et al. (2014). Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy, Epilepsy Behavior, 37, 291-307. https://doi.org/10.1016/j.yebeh.2014.06.023
  51. Robinson LF, Atlas LY, Wager TD (2015). Dynamic functional connectivity using state-based dynamic community structure: method and application to opioid analgesia, Neuroimage, 108, 274-291. https://doi.org/10.1016/j.neuroimage.2014.12.034
  52. Rubinov M and Sporns O (2010). Complex network measures of brain connectivity:Uses and interpretations. NeuroImage, 52, 1059-1069. https://doi.org/10.1016/j.neuroimage.2009.10.003
  53. Sekihara K and Nagarajan SS (2010). Adaptive Spatial Filters for Electro-magnetic Brain Imaging, Springer-Verlag, Berlin.
  54. Shappell H, Caffo BS, Pekar JJ, and Lindquist MA (2019). Improved state change estimation in dynamic functional connectivity using hidden semi-Markov models, NeuroImage, 191, 243-257 https://doi.org/10.1016/j.neuroimage.2019.02.013
  55. Solo V, Poline JB, Lindquist MA, Simpson SL, Bowman DF, Chung MK, and Cassidy B (2018). Connectivity in fMRI: Blind Spots and Breakthroughs, IEEE Transactions on Medical Imaging, 37, 1537-1550. https://doi.org/10.1109/TMI.2018.2831261
  56. Sui J, Adali T, Yu Q, and Calhouna VD (2012). A review of multivariate methods for multimodal fusion of brain imaging data, Journal of Neuroscience Methods 15, 68-81.
  57. Sun FT, Miller LM, and Esposito MD (2004). Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data, NeuroImage, 21, 647-658. https://doi.org/10.1016/j.neuroimage.2003.09.056
  58. Taylor JR, Williams N, Cusack R, et al. (2017). The Cambridge Centre for ageing and neuroscience (Cam-CAN) data repository: structural and functional MRI, MEG, and cognitive data from across-sectional adult lifespan sample, Neuroimage, 144, 262-269. https://doi.org/10.1016/j.neuroimage.2015.09.018
  59. Tovar-Spinoza ZS, Ochi A, Rutka JT, Go C, and Otsubo H (2008). The role of magnetoencephalography in epilepsy surgery, Neurosurgical Focus, 25.
  60. Vaiana M and Muldoon SF (2018). Multilayer brain networks, Journal of Nonlinear Science, 30, 1-23. https://doi.org/10.1007/s00332-019-09566-z
  61. Vidaurre D, Smith SM, and Woolrich MW (2017). Brain network dynamics are hierarchically organized in time, PNAS 114, 48, https://doi.org/10.1073/pnas.1705120114
  62. Warnick R, Guindani M, Erhardt E, Allen E, Calhoun V, and Vannucci M (2018). A bayesian approach for estimating dynamic functional network connectivity in fmri data, Journal of the American Statistical Association, 113, 134-151. https://doi.org/10.1080/01621459.2017.1379404
  63. Whittaker J (1990). Graphical Models in Applied Multivariate Statistics, Wiley, New York.
  64. Wu W, Nagarajan S, and Chen Z (2016). Bayesian Machine Learning: EEGMEG signal processing measurements, IEEE Signal Processing Magazine, 33, 14-36.
  65. Zalesky A, Fornito A, and Bulmore E (2012). On the use of correlation as a measure of network connectivity, NeuroImage, 60, 2096-2106. https://doi.org/10.1016/j.neuroimage.2012.02.001
  66. Zhang J and Su L (2015). Temporal autocorrelation-based beamforming with MEG neuroimaging Data, Journal of the American Statistical Association, 110, 1375-1388. https://doi.org/10.1080/01621459.2015.1054488
  67. Zhang S, Cao C, Quinn A, et al. (2021). Dynamic analysis on simultaneous iEEG-MEG data via hidden Markov model, NeuroImage, 233, 117923. https://doi.org/10.1016/j.neuroimage.2021.117923
  68. Zubarev I, Zetter R, Halme HL, Parkkonen LL (2019). Adaptive neural network classifier for decoding MEG signals, Neuroimage, 197, 425-434. https://doi.org/10.1016/j.neuroimage.2019.04.068