• Title/Summary/Keyword: spatial sense

Search Result 329, Processing Time 0.025 seconds

Design of Optical Biological Sensor for Phycocyanin Parameters Measurement using Fluorescence Technique

  • Lee, Sung Hwa;Mariappan, Vinayagam;Won, Dong Chan;Ann, Myungsuk;Yang, Seungyoun
    • International journal of advanced smart convergence
    • /
    • v.5 no.2
    • /
    • pp.73-79
    • /
    • 2016
  • Remote sensing and measurement are of paramount importance of providing information on the state of water quality in water bodies. The formation and growth of cyanobacteria is of serious concern to in land aquatic life forms and human life. The main cause of water quality deterioration stems from anthropogenic induced eutrophication. The goal of this research to quantify and determine the spatial distribution of cyanobacteria concentration in the water using remote sensing technique. The standard approach to measure water quality based on the direct measurement of the fluorescence of the chlorophyll a in the living algal cells and the same approach used to detect the phycobilin pigments found in blue-green algae (a.k.a. cyanobacteria), phycocyanin and phycoerythrin. This paper propose the emerging sensor design to measure the water quality based on the optical analysis by fluorescence of the phycocyanin pigment. In this research, we developed an method to sense and quantify to derive phycocyanin intensity index for estimating cyanobacteria concentrations. The development of the index was based on the reflectance difference between visible light band 620nm and 665nm. As a result of research this paper presents, an optical biological sensor design information to measure the Phycocyanin parameters in water content.

A Study on Natural Element Application Method for Creating Healing Environment in Hospital's Interior Space (병원 실내공간의 치유환경 조성을 위한 자연요소 적용방법에 관한 연구)

  • Kim, Jeong-Ah
    • Korean Institute of Interior Design Journal
    • /
    • v.20 no.5
    • /
    • pp.245-253
    • /
    • 2011
  • As interests towards health rapidly increase recently, interests and demand for hospital interior space are increasing as well. Therefore, most of today's hospitals that have been functionally designed are transforming into healing environments that consider psychological aspects, in order to assist patients forget about fear, desperation and have peace of mind. With such creation method of healing environment, natural elements can be applied to spaces in order to allow patients feel vitality, hope and adapt positive thinking, and these can eventually lead to affluent fusion of humans, nature and space. Through case analyses of how natural elements are applied to hospital's interior space, this study understands its characteristics. According to the findings, nature is largely classified into light, water, plant, stone/soil, and its application methods can be classified into center, transition, continuity, division, opening and closure. As evident from case analyses, application of natural elements to hospital's interior space promotes exchanges among patients through community formation, and achieves the effect of spatial concentration and public place. Also, ambiguity of exterior and interior boundary creates a sense of expansion and continuous effect, and can also provide a healing environment that can fully absorb natural environment open to patients. This study aims to be of service when designing hospital's interior space, with its natural element application method for healing environment research, and wishes for continuous studies on healing environments with more diverse methods.

PERSONAL SPACE-BASED MODELING OF RELATIONSHIPS BETWEEN PEOPLE FOR NEW HUMAN-COMPUTER INTERACTION

  • Amaoka, Toshitaka;Laga, Hamid;Saito, Suguru;Nakajima, Masayuki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.746-750
    • /
    • 2009
  • In this paper we focus on the Personal Space (PS) as a nonverbal communication concept to build a new Human Computer Interaction. The analysis of people positions with respect to their PS gives an idea on the nature of their relationship. We propose to analyze and model the PS using Computer Vision (CV), and visualize it using Computer Graphics. For this purpose, we define the PS based on four parameters: distance between people, their face orientations, age, and gender. We automatically estimate the first two parameters from image sequences using CV technology, while the two other parameters are set manually. Finally, we calculate the two-dimensional relationship of multiple persons and visualize it as 3D contours in real-time. Our method can sense and visualize invisible and unconscious PS distributions and convey the spatial relationship of users by an intuitive visual representation. The results of this paper can be used to Human Computer Interaction in public spaces.

  • PDF

Tele-operated Control of an Autonomous Mobile Robot Using a Virtual Force-reflection

  • Tack, Han-Ho;Kim, Chang-Geun;Kang, Shin-Chul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.244-250
    • /
    • 2003
  • In this paper, the relationship between a slave robot and the uncertain remote environment is modeled as the impedance to generate the virtual force to feed back to the operator. For the control of a tele-operated mobile robot equipped with camera, the tele-operated mobile robot take pictures of remote environment and sends the visual information back to the operator over the Internet. Because of the limitation of communication bandwidth and narrow view-angles of camera, it is not possible to watch the environment clearly, especially shadow and curved areas. To overcome this problem, the virtual force is generated according to both the distance between the obstacle and robot and the approaching velocity of the obstacle. This virtual force is transferred back to the master over the Internet and the master(two degrees of freedom joystick), which can generate force, enables a human operator to estimate the position of obstacle in the remote environment. By holding this master, in spite of limited visual information, the operator can feel the spatial sense against the remote environment. This force reflection improves the performance of a tele-operated mobile robot significantly.

Analysis of TIMSS 2007 Released Items Common with TIMSS 1999, 2003 on the View of Curriculum (교육과정에 근거한 TIMSS 2007 공개 추이문항의 정답률 분석)

  • Kim, Sun-Hee;Kim, Kyung-Hee
    • Journal of Educational Research in Mathematics
    • /
    • v.19 no.1
    • /
    • pp.99-121
    • /
    • 2009
  • This study analyzed the difficulty trend of item which are common with TIMSS 1999, 2003, 2007 and are released since TIMSS 2007. The results show that the 7th curriculum has positive effects on the students' achievement in the domain such as spatial sense of rotation, ratio proportion percent, pattern, calculation of decimal numbers, concept of angle, area of triangle, and qualitative approach to graph. And the results leaved the consideration for the process of scoring, teaching method of statistical probability concept, and making table as a problem solving method.

  • PDF

The New Directions of Secondary Geometry Curriculum on Historical Perspectives (기하와 기하교육과정 변천과 21세기 기하교육의 방향)

  • Chang, Kyung-Yoon
    • Journal for History of Mathematics
    • /
    • v.21 no.4
    • /
    • pp.105-126
    • /
    • 2008
  • This article summarizes the historical changes of the secondary school geometry to give insights into the new direction of geometry education for the 21th century. Geometry has been considered as an essential subject in high school since mid-nineteen century in accordance with the social changes. Since the development of computer softwares such as CAD effects on the role of geometry in work and professional societies, the knowledge and skills the contemporary world require to school geometry have being changed. More focus on applications and modeling aspects, expansion of reasoning and problem solving, emphasis on design-related elements are features of the school geometry for the new century.

  • PDF

A Study on Strategy Direction for Promoting the U-City Industry Through its Characteristics (산업 특성을 통한 U-City산업 발전 정책 방향성에 대한 연구 -서울특별시 사례를 중심으로-)

  • Lim, Si-Yeong;Shin, Dong-Bin;Ahn, Jong-Wook;Yi, Mi-Sook
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.1
    • /
    • pp.37-43
    • /
    • 2011
  • In this study, we dealt with the U-City industry in Seoul as a case study for deriving the characteristics of it. Using the interindustry analysis, we made sure that U-City industry has a great forward linkage effect. It means that development of U-City industry have a good effect on the entire industry likewise the infrastructure. In this sense it is important that we have to promote it first. Based on this result, we suggested the strategy direction as follows: 1) Solving the emerging problem, 2) Identifying the roles of public and private sector, 3) Drawing up the plan for supporting.

초등수학 기하문제해결에서의 시각화 과정 분석

  • Yun, Yea-Joo;Kim, Sung-Joon
    • East Asian mathematical journal
    • /
    • v.26 no.4
    • /
    • pp.553-579
    • /
    • 2010
  • Geometric education emphasize reasoning ability and spatial sense through development of logical thinking and intuitions in space. Researches about space understanding go along with investigations of space perception ability which is composed of space relationship, space visualization, space direction etc. Especially space visualization is one of the factors which try conclusion with geometric problem solving. But studies about space visualization are limited to middle school geometric education, studies in elementary level haven't been done until now. Namely, discussions about elementary students' space visualization process and ability in plane or space figures is deficient in relation to geometric problem solving. This paper examines these aspects, especially in relation to plane and space problem solving in elementary levels. Firstly we propose the analysis frame to investigate a visualization process for plane problem solving and a visualization ability for space problem solving. Nextly we select 13 elementary students, and observe closely how a visualization process is progress and how a visualization ability is played role in geometric problem solving. Together with these analyses, we propose concrete examples of visualization ability which make a road to geometric problem solving. Through these analysis, this paper aims at deriving various discussions about visualization in geometric problem solving of the elementary mathematics.

Internet-based Teleoperation of a Mobile Robot with Force-reflection (인터넷 환경에서 힘반영을 이용한 이동로봇의 원격제어)

  • 진태석;임재남;이장명
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.8
    • /
    • pp.585-591
    • /
    • 2003
  • A virtual force is generated and fed back to the operator to make the teleoperation more reliable, which reflects the relationship between a slave robot and an uncertain remote environment as a form of an impedance. In general, for the teleoperation, the teleoperated mobile robot takes pictures of the remote environment and sends the visual information back to the operator over the Internet. Because of the limitations of communication bandwidth and narrow view-angles of camera, it is not possible to watch certain regions, for examples, the shadow and curved areas. To overcome this problem, a virtual force is generated according to both the distance between the obstacle and the robot and the approaching velocity of the obstacle w.r.t the collision vector based on the ultrasonic sensor data. This virtual force is transferred back to the master (two degrees of freedom joystick) over the Internet to enable a human operator to estimate the position of obstacle at the remote site. By holding this master, in spite of limited visual information, the operator can feel the spatial sense against the remote environment. It is demonstrated by experiments that this collision vector based haptic reflection improves the performance of teleoperated mobile robot significantly.

A Study on the Process of the Architectural Design Generation based on the 3D Voronoi Diagram (3차원 보로노이 다이어그램을 활용한 건축 디자인 생성 프로세스에 관한 연구)

  • Park, Jong-Gin;Jun, Han-Jong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.5
    • /
    • pp.306-313
    • /
    • 2009
  • This paper presents the unique formation process of a volumetric space with the digital algorithm developed for Voronoi diagram in order to generate an effective parametric architectural form. By applying systematic parameters of architectural conditions within digital parametric tools, the interactions among sub-spaces developed by Voronoi diagram are enhanced by manipulating the spatial structures. In this paper, we discuss how the parametric distributing and zoning geometrical system can support designers in developing a free-formed space, and research on how this system creates a 3D volumetric space. With the in-depth research on the system and structure of Voronoi diagram, the approaches to the application of Voronoi diagram into architectural form generation are clarified to be an effective, creative and successful digital tool. The result of the application of the Voronoi diagram improves the design quality with systematic language in the sense that the sub-regions are created and controlled under the systematic and balanced hierarchy having dynamic relationships among each others with the restoration of the equilibrium of forces and tensions. This 3-dimensional Voronoi diagram provides another means for designers to solve architectural issues and to reinforce their design concepts.