• Title/Summary/Keyword: spatial prediction

Search Result 945, Processing Time 0.026 seconds

A Performance Study on the TPR*-Tree (TPR*-트리의 성능 분석에 관한 연구)

  • Kim, Sang-Wook;Jang, Min-Hee;Lim, Seung-Hwan
    • Journal of Korea Spatial Information System Society
    • /
    • v.8 no.1 s.16
    • /
    • pp.17-25
    • /
    • 2006
  • TPR*-tree is the most widely-used index structure for effectively predicting the future positions of moving objects. The TPR*-tree, however, has the problem that both of the dead space in a bounding region and the overlap among hounding legions become larger as the prediction time in the future gets farther. This makes more nodes within the TPR*-tree accessed in query processing time, which incurs the performance degradation. In this paper, we examine the performance problem quantitatively with a series of experiments. First, we show how the performance deteriorates as a prediction time gets farther, and also show how the updates of positions of moving objects alleviates this problem. Our contribution would help provide Important clues to devise strategies improving the performance of TPR*-trees further.

  • PDF

Prediction of Soil Distribution Using Digital Terrain Indices (수치 지형인자를 활용한 토양수분분포 예측)

  • Lee, Hak-Su;Kim, Gyeong-Hyeon;Han, Ji-Yeong;Kim, Sang-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.4
    • /
    • pp.391-401
    • /
    • 2001
  • Several curvature parameters, solar radiation parameter and topographic flow generation parameters have been summarized and calculated to predict the spatial distribution of soil moisture content. The spatial distribution of soil moisture data can be obtained using Global Positioning System(GPS) and portable soil moisture monitoring equipment, Theta-Probe. Correlation analysis has been performed between the parameters of soil moisture prediction and measured data of soil moisture. Multiple regression analysis of soil moisture prediction shows the potential capability and limitations of existing methods of digital terrain analysis.

  • PDF

Prediction of Consumer Propensity to Purchase Using Geo-Lifestyle Clustering and Spatiotemporal Data Cube in GIS-Postal Marketing System (GIS-우편 마케팅 시스템에서 Geo-Lifestyle 군집화 및 시공간 데이터 큐브를 이용한 구매.소비 성향 예측)

  • Lee, Heon-Gyu;Choi, Yong-Hoon;Jung, Hoon;Park, Jong-Heung
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.4
    • /
    • pp.74-84
    • /
    • 2009
  • GIS based new postal marketing method is presented in this paper with spatiotemporal mining to cope with domestic mail volume decline and to strengthening competitiveness of postal business. Market segmentation technique for socialogy of population and spatiotemporal prediction of consumer propensity to purchase through spatiotemporal multi-dimensional analysis are suggested to provide meaningful and accurate marketing information with customers. Internal postal acceptance & external statistical data of local districts in the Seoul Metropolis are used for the evaluation of geo-lifestyle clustering and spatiotemporal cube mining. Successfully optimal 14 maketing clusters and spatiotemporal patterns are extracted for the prediction of consumer propensity to purchase.

  • PDF

Landslide Prediction with Angle of Repose Prediction Using 3D Spatial Coordinate System and Drone Image Detection (3차원 공간 좌표 시스템과 드론 영상 검출을 활용한 산사태 안식각 예측에 관한 연구)

  • Yong-Ju Chu;Soo-Young Lim;Seung-Yop Lee
    • Smart Media Journal
    • /
    • v.12 no.3
    • /
    • pp.77-84
    • /
    • 2023
  • Forest fires are representative natural disasters resulting from dramatic global climate change in these modern times. When forest formation is insufficient due to forest damage caused by fire, secondary damages such as landslides occur during the winter thawing period and heavy rains. In most countries, only a limited area is managed as CCTV-centered monitoring systems for forest management. For the landslide prediction, markers containing 3D spatial coordinates were located on the slopes of the danger areas in advance. Then 3D mapping and angle of repose were obtained by periodic drone imaging. The recognition range and angle of view of markers were defined, and a new method for predicting signs of landslides in advance was presented in this study.

Development of Prediction Model of Chloride Diffusion Coefficient using Machine Learning (기계학습을 이용한 염화물 확산계수 예측모델 개발)

  • Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.87-94
    • /
    • 2023
  • Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure's safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.

Comparison and Evaluation of Root Mean Square for Parameter Settings of Spatial Interpolation Method (공간보간법의 매개변수 설정에 따른 평균제곱근 비교 및 평가)

  • Lee, Hyung-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.3
    • /
    • pp.29-41
    • /
    • 2010
  • In this study, the prediction errors of various spatial interpolation methods used to model values at unmeasured locations was compared and the accuracy of these predictions was evaluated. The root mean square (RMS) was calculated by processing different parameters associated with spatial interpolation by using techniques such as inverse distance weighting, kriging, local polynomial interpolation and radial basis function to known elevation data of the east coastal area under the same condition. As a result, a circular model of simple kriging reached the smallest RMS value. Prediction map using the multiquadric method of a radial basis function was coincident with the spatial distribution obtained by constructing a triangulated irregular network of the study area through the raster mathematics. In addition, better interpolation results can be obtained by setting the optimal power value provided under the selected condition.

On the Hierarchical Modeling of Spatial Measurements from Different Station Networks (다양한 관측네트워크에서 얻은 공간자료들을 활용한 계층모형 구축)

  • Choi, Jieun;Park, Man Sik
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.1
    • /
    • pp.93-109
    • /
    • 2013
  • Geostatistical data or point-referenced data have the information on the monitoring stations of interest where the observations are measured. Practical geostatistical data are obtained from a wide variety of observational monitoring networks that are mainly operated by the Korean government. When we analyze geostatistical data and predict the expectations at unobservable locations, we can improve the reliability of the prediction by utilizing some relevant spatial data obtained from different observational monitoring networks and blend them with the measurements of our main interest. In this paper, we consider the hierarchical spatial linear model that enables us to link spatial variables from different resources but with similar patterns and guarantee the precision of the prediction. We compare the proposed model to a classical linear regression model and simple kriging in terms of some information criteria and one-leave-out cross-validation. Real application deals with Sulfur Dioxide($SO_2$) measurements from the urban air pollution monitoring network and wind speed data from the surface observation network.

Regional Optimization of Forest Fire Danger Index (FFDI) and its Application to 2022 North Korea Wildfires (산불위험지수 지역최적화를 통한 2022년 북한산불 사례분석)

  • Youn, Youjeong;Kim, Seoyeon;Choi, Soyeon;Park, Ganghyun;Kang, Jonggu;Kim, Geunah;Kwon, Chunguen;Seo, Kyungwon;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1847-1859
    • /
    • 2022
  • Wildfires in North Korea can have a directly or indirectly affect South Korea if they go south to the Demilitarized Zone. Therefore, this study calculates the regional optimized Forest Fire Danger Index (FFDI) based on Local Data Assessment and Prediction System (LDAPS) weather data to obtain forest fire risk in North Korea, and applied it to the cases in Goseong-gun and Cheorwon-gun, North Korea in April 2022. As a result, the suitability was confirmed as the FFDI at the time of ignition corresponded to the risk class Extreme and Severe sections, respectively. In addition, a qualitative comparison of the risk map and the soil moisture map before and after the wildfire, the correlation was grasped. A new forest fire risk index that combines drought factors such as soil moisture, Standardized Precipitation Index (SPI), and Normalized Difference Water Index (NDWI) will be needed in the future.

Computation of geographic variables for air pollution prediction models in South Korea

  • Eum, Youngseob;Song, Insang;Kim, Hwan-Cheol;Leem, Jong-Han;Kim, Sun-Young
    • Environmental Analysis Health and Toxicology
    • /
    • v.30
    • /
    • pp.10.1-10.14
    • /
    • 2015
  • Recent cohort studies have relied on exposure prediction models to estimate individual-level air pollution concentrations because individual air pollution measurements are not available for cohort locations. For such prediction models, geographic variables related to pollution sources are important inputs. We demonstrated the computation process of geographic variables mostly recorded in 2010 at regulatory air pollution monitoring sites in South Korea. On the basis of previous studies, we finalized a list of 313 geographic variables related to air pollution sources in eight categories including traffic, demographic characteristics, land use, transportation facilities, physical geography, emissions, vegetation, and altitude. We then obtained data from different sources such as the Statistics Geographic Information Service and Korean Transport Database. After integrating all available data to a single database by matching coordinate systems and converting non-spatial data to spatial data, we computed geographic variables at 294 regulatory monitoring sites in South Korea. The data integration and variable computation were performed by using ArcGIS version 10.2 (ESRI Inc., Redlands, CA, USA). For traffic, we computed the distances to the nearest roads and the sums of road lengths within different sizes of circular buffers. In addition, we calculated the numbers of residents, households, housing buildings, companies, and employees within the buffers. The percentages of areas for different types of land use compared to total areas were calculated within the buffers. For transportation facilities and physical geography, we computed the distances to the closest public transportation depots and the boundary lines. The vegetation index and altitude were estimated at a given location by using satellite data. The summary statistics of geographic variables in Seoul across monitoring sites showed different patterns between urban background and urban roadside sites. This study provided practical knowledge on the computation process of geographic variables in South Korea, which will improve air pollution prediction models and contribute to subsequent health analyses.