• Title/Summary/Keyword: spatial outlier

Search Result 39, Processing Time 0.029 seconds

Generalized Panoramic Scene Reconstruction from Video Sequences Based on Outlier Rejection (아웃라이어 배제에 기초한 일반화된 파노라마 영상 재구성)

  • 서종열;박종현;강문기
    • Journal of Broadcast Engineering
    • /
    • v.6 no.2
    • /
    • pp.160-168
    • /
    • 2001
  • In this paper, we propose a new practical motion model that can exploit the general properties of camera motion in constructing a panorama. accounting for panning. tilting, and evert the change in focal length of the camera. We also present an efficient algorithm to handle moving objects or noose in the scene based on outliers rejection. Spatial and temporal statistical properties of motion field are exploited to detect the outliers. The proposed algorithm removes moving objects or noise from the panoramic Image so that mode clear and complete view of the background Image can be obtained. This method does not require assumptions or a priors knowledge of the scene. The entire process is fully automatic as this method does not require any manual correction in the process of constructing a Panorama. The proposed algorithm is tested on the broadcasting images of soccer games. Oun simulation result shows that this method is superior to conventional image mosaicing algorithms.

  • PDF

A Study on the Improvement in Local Gauge Correction Method (국지 우량계 보정 방법의 개선에 관한 연구)

  • Kim, Kwang-Ho;Kim, Min-Seong;Seo, Seong-Woon;Kim, Park-Sa;Kang, Dong-Hwan;Kwon, Byung-Hyuk
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.525-540
    • /
    • 2015
  • Spatial distribution of precipitation has been estimated based on the local gauge correction (LGC) with a fixed inverse distance weighting (IDW), which is not optimized in taking effective radius into account depending on the radar error. We developed an algorithm, improved local gauge correction (ILGC) which eliminates outlier in radar rainrate errors and optimize distance power for IDW. ILGC was statistically examined the hourly cumulated precipitation from weather for the heavy rain events. Adjusted radar rainfall from ILGC is improved to 50% compared with unadjusted radar rainfall. The accuracy of ILGC is higher to 7% than that of LGC, which resulted from a positive effect of the optimal algorithm on the adjustment of quantitative precipitation estimation from weather radar.

Geostatistical Integration Analysis of Geophysical Survey and Borehole Data Applying Digital Map (수치지도를 활용한 탄성파탐사 자료와 시추조사 자료의 지구통계학적 통합 분석)

  • Kim, Hansaem;Kim, Jeongjun;Chung, Choongki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.3
    • /
    • pp.65-74
    • /
    • 2014
  • Borehole investigation which is mainly used to figure out geotechnical characterizations at construction work has the benefit that it provides a clear and convincing geotechnical information. But it has limitations to get the overall information of the construction site because it is performed at point location. In contrast, geophysical measurements like seismic survey has the advantage that the geological stratum information of a large area can be characterized in a continuous cross-section but the result from geophysics survey has wide range of values and is not suitable to determine the geotechnical design values directly. Therefore it is essential to combine borehole data and geophysics data complementally. Accordingly, in this study, a three-dimensional spatial interpolation of the cross-sectional distribution of seismic refraction was performed using digitizing and geostatistical method (krigring). In the process, digital map were used to increase the trustworthiness of method. Using this map, errors of ground height which are broken out in measurement from boring investigation and geophysical measurements can be revised. After that, average seismic velocity are derived by comparing borehole data with geophysical speed distribution data of each soil layer. During this process, outlier analysis is adapted. On the basis of the average seismic velocity, integrated analysis techniques to determine the three-dimensional geological stratum information is established. Finally, this analysis system is applied to dam construction field.

A Study on the Methodology of Extracting the vulnerable districts of the Aged Welfare Using Artificial Intelligence and Geospatial Information (인공지능과 국토정보를 활용한 노인복지 취약지구 추출방법에 관한 연구)

  • Park, Jiman;Cho, Duyeong;Lee, Sangseon;Lee, Minseob;Nam, Hansik;Yang, Hyerim
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.169-186
    • /
    • 2018
  • The social influence of the elderly population will accelerate in a rapidly aging society. The purpose of this study is to establish a methodology for extracting vulnerable districts of the welfare of the aged through machine learning(ML), artificial neural network(ANN) and geospatial analysis. In order to establish the direction of analysis, this progressed after an interview with volunteers who over 65-year old people, public officer and the manager of the aged welfare facility. The indicators are the geographic distance capacity, elderly welfare enjoyment, officially assessed land price and mobile communication based on old people activities where 500 m vector areal unit within 15 minutes in Yongin-city, Gyeonggi-do. As a result, the prediction accuracy of 83.2% in the support vector machine(SVM) of ML using the RBF kernel algorithm was obtained in simulation. Furthermore, the correlation result(0.63) was derived from ANN using backpropagation algorithm. A geographically weighted regression(GWR) was also performed to analyze spatial autocorrelation within variables. As a result of this analysis, the coefficient of determination was 70.1%, which showed good explanatory power. Moran's I and Getis-Ord Gi coefficients are analyzed to investigate spatially outlier as well as distribution patterns. This study can be used to solve the welfare imbalance of the aged considering the local conditions of the government recently.

Characteristics for the Distribution of Elderly Population by Utilizing the Census Data (센서스 데이터를 활용한 고령인구 분포 특성)

  • Nam, Kwang-Woo;Gwon, Il-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.464-469
    • /
    • 2013
  • After city of Busan has been entered to the aging society in 2000, the city has the highest aging rate among 7 representative cities in 2011. Moreover, while entire population and number of average household are decreasing, over 65 years old of elderly population is rapidly increasing. So, it is possible to enter the super-aged society, where aging rate would be about 20% after 2020. The purpose of this study is that older housing-related analysis is consisted of dong-unit, and this led microscopic analysis has become necessary. Surveys from 2000 through 2010, census aggregate (output area) unit of spatial analysis was conducted. Take advantages of this, aging population and area, soaring area, high-density areas, such as the region of interest were primary extracted, and microscopic location and spatial distribution patterns were analyzed. Upon analysis, aging population is concentrated in the city and adjacent area, the highlands, and 10 years of increasing rate was more than 30 times in certain aggregate. Regarding the characteristic of these areas, the original city center, Busan, especially concentrated and intensified in aging population. Also, 2000 to 2010, the overall distribution pattern of Busan has identified aging population that is increasingly being distributed. This is the result, which is confronted with previous research result. Entering a super aged-society for the future is accordance with migration of social costs and improve the quality of life of elderly. And this could be the basic information to use the spatial dimension for the corresponding.

Image Fusion of High Resolution SAR and Optical Image Using High Frequency Information (고해상도 SAR와 광학영상의 고주파 정보를 이용한 다중센서 융합)

  • Byun, Young-Gi;Chae, Tae-Byeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.75-86
    • /
    • 2012
  • Synthetic Aperture Radar(SAR) imaging system is independent of solar illumination and weather conditions; however, SAR image is difficult to interpret as compared with optical images. It has been increased interest in multi-sensor fusion technique which can improve the interpretability of $SAR^{\circ\circ}$ images by fusing the spectral information from multispectral(MS) image. In this paper, a multi-sensor fusion method based on high-frequency extraction process using Fast Fourier Transform(FFT) and outlier elimination process is proposed, which maintain the spectral content of the original MS image while retaining the spatial detail of the high-resolution SAR image. We used TerraSAR-X which is constructed on the same X-band SAR system as KOMPSAT-5 and KOMPSAT-2 MS image as the test data set to evaluate the proposed method. In order to evaluate the efficiency of the proposed method, the fusion result was compared visually and quantitatively with the result obtained using existing fusion algorithms. The evaluation results showed that the proposed image fusion method achieved successful results in the fusion of SAR and MS image compared with the existing fusion algorithms.

A Study on Quality Control Method for Minutely Rainfall Data (분 단위 강우자료의 품질 개선방안에 관한 연구)

  • Kim, Min-Seok;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.319-326
    • /
    • 2015
  • Rainfall data is necessary component for water resources design and flood warning system. Most analysis are used long-term hourly data of surface synoptic stations from the Meteorological Administration, Ministry of land, Infrastructure and Transport and others. However, It will be used minutely data of more high density automatic weather stations than surface synoptic stations expecting to increase the frequency of heavy precipitation. But minutely data has a problem about quality of rainfall data by auto observation. This study analyzed about quality control method using automatic weather station's minutely rainfall data of meteorological administration. It was performed assessment of the quality control that was classified quality control of miss Data, outlier data and rainfall interpolation. This method will be utilized when hydrological analysis uses minute rainfall data.

A Real-time Correction of the Underestimation Noise for GK2A Daily NDVI (GK2A 일단위 NDVI의 과소추정 노이즈 실시간 보정)

  • Lee, Soo-Jin;Youn, Youjeong;Sohn, Eunha;Kim, Mija;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1301-1314
    • /
    • 2022
  • Normalized Difference Vegetation Index (NDVI) is utilized as an indicator to represent the vegetation condition on the land surface in various applications such as land cover, crop yield, agricultural drought, soil moisture, and forest disaster. However, satellite optical sensors for visible and infrared rays cannot see through the clouds, so the NDVI of the cloud pixel is not a valid value for the land surface. This study proposed a real-time correction of the underestimation noise for GEO-KOMPSAT-2A (GK2A) daily NDVI and made sure its feasibility through the quantitative comparisons with Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI and the qualitative interpretation of time-series changes. The underestimation noise was effectively corrected by the procedures such as the time-series correction considering vegetation phenology, the outlier removal using long-term climatology, and the gap filling using rigorous statistical methods. The correlation with MODIS NDVI was higher, and the difference was lower, showing a 32.7% improvement compared to the original NDVI product. The proposed method has an extensibility for use in other satellite products with some modification.

A Study on the Observation of Soil Moisture Conditions and its Applied Possibility in Agriculture Using Land Surface Temperature and NDVI from Landsat-8 OLI/TIRS Satellite Image (Landsat-8 OLI/TIRS 위성영상의 지표온도와 식생지수를 이용한 토양의 수분 상태 관측 및 농업분야에의 응용 가능성 연구)

  • Chae, Sung-Ho;Park, Sung-Hwan;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.931-946
    • /
    • 2017
  • The purpose of this study is to observe and analyze soil moisture conditions with high resolution and to evaluate its application feasibility to agriculture. For this purpose, we used three Landsat-8 OLI (Operational Land Imager)/TIRS (Thermal Infrared Sensor) optical and thermal infrared satellite images taken from May to June 2015, 2016, and 2017, including the rural areas of Jeollabuk-do, where 46% of agricultural areas are located. The soil moisture conditions at each date in the study area can be effectively obtained through the SPI (Standardized Precipitation Index)3 drought index, and each image has near normal, moderately wet, and moderately dry soil moisture conditions. The temperature vegetation dryness index (TVDI) was calculated to observe the soil moisture status from the Landsat-8 OLI/TIRS images with different soil moisture conditions and to compare and analyze the soil moisture conditions obtained from the SPI3 drought index. TVDI is estimated from the relationship between LST (Land Surface Temperature) and NDVI (Normalized Difference Vegetation Index) calculated from Landsat-8 OLI/TIRS satellite images. The maximum/minimum values of LST according to NDVI are extracted from the distribution of pixels in the feature space of LST-NDVI, and the Dry/Wet edges of LST according to NDVI can be determined by linear regression analysis. The TVDI value is obtained by calculating the ratio of the LST value between the two edges. We classified the relative soil moisture conditions from the TVDI values into five stages: very wet, wet, normal, dry, and very dry and compared to the soil moisture conditions obtained from SPI3. Due to the rice-planing season from May to June, 62% of the whole images were classified as wet and very wet due to paddy field areas which are the largest proportions in the image. Also, the pixels classified as normal were analyzed because of the influence of the field area in the image. The TVDI classification results for the whole image roughly corresponded to the SPI3 soil moisture condition, but they did not correspond to the subdivision results which are very dry, wet, and very wet. In addition, after extracting and classifying agricultural areas of paddy field and field, the paddy field area did not correspond to the SPI3 drought index in the very dry, normal and very wet classification results, and the field area did not correspond to the SPI3 drought index in the normal classification. This is considered to be a problem in Dry/Wet edge estimation due to outlier such as extremely dry bare soil and very wet paddy field area, water, cloud and mountain topography effects (shadow). However, in the agricultural area, especially the field area, in May to June, it was possible to effectively observe the soil moisture conditions as a subdivision. It is expected that the application of this method will be possible by observing the temporal and spatial changes of the soil moisture status in the agricultural area using the optical satellite with high spatial resolution and forecasting the agricultural production.