컴퓨터 비전 기술이 위성영상에 적용되면서, 최근 들어 딥러닝 영상인식을 이용한 구름 탐지가 관심을 끌고 있다. 본연구에서는 SPARCS (Spatial Procedures for Automated Removal of Cloud and Shadow) Cloud Dataset과 영상자료증대 기법을 활용하여 U-Net 구름탐지 모델링을 수행하고, 10폴드 교차검증을 통해 객관적인 정확도 평가를 수행하였다. 512×512 화소로 구성된 1800장의 학습자료에 대한 암맹평가 결과, Accuracy 0.821, Precision 0.847, Recall 0.821, F1-score 0.831, IoU (Intersection over Union) 0.723의 비교적 높은 정확도를 나타냈다. 그러나 구름그림자 중 14.5%, 구름 중 19.7% 정도가 땅으로 잘못 예측되기도 했는데, 이는 학습자료의 양과 질을 보다 더 향상시킴으로써 개선 가능할 것으로 보인다. 또한 최근 각광받고 있는 DeepLab V3+ 모델이나 NAS(Neural Architecture Search) 최적화 기법을 통해 차세대중형위성 1, 2, 4호 등의 구름탐지에 활용 가능할 것으로 기대한다.
본 연구는 고해상도 위성영상을 딥러닝 알고리즘에 적용하여 토지피복을 분류하고 공간객체별 알고리즘의 성능 검증에 대한 연구이다. 이를 Fully Convolutional Network계열의 알고리즘을 선정하였으며, Kompasat-3 위성영상, 토지피복지도 및 임상도를 활용하여 데이터셋을 구축하였다. 구축된 데이터셋을 알고리즘에 적용하여 각각 최적 하이퍼파라미터를 산출하였다. 하이퍼파라미터 최적화 이후 최종 분류를 시행하였으며, 전체 정확도는 DeeplabV3+가 81.7%로 가장 높게 산정되었다. 그러나 분류 항목별로 정확도를 살펴보면, 도로 및 건물에서 SegNet이 가장 우수한 성능을 나타내었으며, 활엽수, 논의 항목에서 U-Net이 가장 높은 정확도를 보였다. DeeplabV3+의 경우 밭과 시설재배지, 초지 등에서 다른 두 모델보다 우수한 성능을 나타내었다. 결과를 통해 토지피복 분류를 위해 하나의 알고리즘 적용에 대한 한계점을 확인하였으며, 향후 공간객체별로 적합한 알고리즘을 적용한다면, 높은 품질의 토지피복분류 결과를 산출할 수 있을 것으로 기대된다.
Rice paddy has been actively converted into upland crop fields as more profitable upland crop cultivation are encouraged along with the decrease in rice consumption. However, the current water supply system remains mainly for paddy water supply, so research on pipeline water supply for upland cultivation is needed. The objective of this study was to optimize storage tank installation locations for pipeline water supply in reservoir irrigation districts. Five of reservoir irrigation districts were selected as the study sites and gridded of 10×10 m in size. Then genetic algorithm was adopted to evaluate the effects of spatial storage tank allocation on total pipeline cost. The lengths of the main and branch pipelines were considered as the objective cost function for the optimization of storage tank installation. Overall the shorter the branch pipeline and the longer the main pipeline, as the number of storage tanks increase. The minimal pipeline cost, i.e., optimal condition was reached when approximately 10% of the storage tank numbers to total upland plots were installed. The methodology presented in this study can be applied to determine the number and spatial arrangement of storage tanks for upland pipeline irrigation system design.
이 논문에서는 반무한 고체영역의 표면에서 측정한 변위응답의 시간이력으로부터 유한요소망 연속기법을 이용해 탄성파 속도의 공간적 분포를 추정하는 역해석 문제를 소개한다. 반무한 영역에서의 역해석을 위해서는 해석 대상이 되는 유한영역의 경계에서 파동의 반사가 일어나지 않도록 하는 것이 중요하다. 이를 위해 유한영역의 경계면에 perfectly-matchedlayers(PMLs)라는 수치적 파동흡수층을 도입하였고, PML을 경계로 하는 유한영역에서 역해석 문제를 정의하였다. 이 문제를 탄성파동방정식을 구속조건으로 하는 최적화 문제로 표현하였으며, 라그랑주 승수법에 기초한 비구속 최적화 기법에 의해 탄성파속도의 최적 분포를 결정하였다. 해의 정확도와 수렴성을 높이기 위해 유한요소망 연속기법을 도입하여 점진적으로 밀도가 증가하는 유한요소망에 대해 연속적으로 역해석을 수행하였다. 1차원 예제들을 통해 유한요소망 연속기법을 이용한 역해석으로부터 탄성파속도의 분포를 정확히 추정할 수 있음을 확인하였으며, 측정 응답에 노이즈가 존재하는 경우에도 제안한 역해석 기법은 목표 탄성파속도 분포에 근사한 결과를 도출하였다.
Time-series models like AR-ARX and ARMAX, provide a robust way to capture the dynamic properties of structures, and their residuals can be effectively used as features for damage detection. Even though several research papers discuss the implementation of AR-ARX and ARMAX models for damage diagnosis, they are basically been exploited so far for detecting the time instant of damage and also the spatial location of the damage. However, the inverse problem associated with damage quantification i.e. extent of damage using time series models is not been reported in the literature. In this paper, an approach to detect the extent of damage by combining the ARMAX model by formulating the inverse problem as a multi-constrained optimization problem and solving using a newly developed hybrid adaptive differential search with dynamic interaction is presented. The proposed variant of the differential search technique employs small multiple populations which perform the search independently and exchange the information with the dynamic neighborhood. The adaptive features and local search ability features are built into the algorithm in order to improve the convergence characteristics and also the overall performance of the technique. The multi-constrained optimization formulations of the inverse problem, associated with damage quantification using time series models, attempted here for the first time, can considerably improve the robustness of the search process. Numerical simulation studies have been carried out by considering three numerical examples to demonstrate the effectiveness of the proposed technique in robustly identifying the extent of the damage. Issues related to modeling errors and also measurement noise are also addressed in this paper.
본 논문에서는 CDMA2000 역방향 링크에서 DS/CDMA 용 rake structure antenna away에 적용되는 새로운 방식의 simplex downhill 최적화 기법 빔포밍 알고리즘을 제안하고 있다. 본 논문에서 제안한 방법은 요구되는 신호(파일럿) 분산 행렬과 간섭 분산 행렬을 사용하고 있으며, 빔포밍 가중치들은 simplex downhill 최적화 알고리즘을 사용하여 최대 SINR 기준에 따라 만들어 졌다. 본 논문에서 제안한 구조는 기존의 적응 빔포밍 알고리즘보다 더 적은 계산량, 개선된 수렴 속도와 성능을 제공한다. Simplex downhill 방법은 최적화되기 위한 결정함수의 값만을 요구하기 때문에 최적화되거나 준최적화된 가중치 벡터를 찾기에 적합한 방식이다. 또한 rake beamformer 성능을 공간 채널모델에서의 여러종류 파라미터 값에 대하여 분석하였으며, 기존 방식의 rake 수신기와 제안된 방식을 동일한 수신 전력에서 비교 분석하였다.
본 연구에서는 천연가스버스 충전소 위치 선정의 객관성과 효율성을 확보하기 위한 노력의 일환으로 공간적 접근성과 통행 비용을 고려한 천연가스 충전소 입지선정 모형을 개발하였다. 본 연구에서 제시한 충전소 입지선정 모형은 고정식 충전소를 대상으로 하였으며, 2단계로 구성되었다. 1단계에서는 천연가스버스의 노선 기종점으로부터 이동거리 제약조건을 만족하는 충전소 입지 대안들을 Heuristic Algorithm을 통해 선정하였으며, 모형의 2단계에서는 변형된 Transportation Problem을 이용하여 충전소 입지대안별 최소 통행비용을 산출하고 이를 충전소의 설치 및 운영비용과 비교분석하여 충전소 최적 입지대안을 도출하였다. 본 모형의 적용가능성 분석을 위해 수도권내의 대표적 중소도시인 안양시를 대상으로하여 천연가스버스 수요량에 따른 충전소의 입지와 규모를 산출하였다. 본 연구를 통해 객관적이고 합리적인 천연가스 충전소 입지선정 방법론의 기틀을 제시함으로써 향후 천연가스버스의 원활한 보급에 기여할 수 있을 것으로 판단된다.
Long-Term Hydrologic Impact Assessment (L-THIA) was modified to improve runoff and pollutant load prediction for Korean watersheds with changes in land use classification and event mean concentration produced from observed data in Korea. The L-THIA model was linked with SCE-UA, which is one of the global optimization techniques, to automatically calibrate direct runoff. Modified L-THIA model was applied to Gumho River Basins to analyze spatial distribution of nonpoint source pollution. The results of model calibration during 1991~2000 and validation during 1981~1990 for direct runoff represented high model efficiency of 0.76 for calibration and 0.86 for validation. As a results of spatial analysis of nonpoint source pollution, the BOD was mainly loaded from urban area but SS, TN, and TP from agricultural area which is mainly located along the stream. Modified L-THIA model improve its accuracy with minimum imput data and application efforts. From this study, we can find out the L-THIA model is very useful tool to predict direct runoff and pollutant loads from the watershed and spatial analysis of nonpoint source pollution.
영상의 시각적 특성을 이용하여 영상 데이타베이스를 검색하는 내용 기반 영상 검색 시스템에서 사용자가 직접 작성한 질의 영상에 존재하는 불완전성을 극복하기 위하여, 물체의 정확한 좌표값 대신 물체간의 위치 관계를 비교하는 기법이 많이 사용된다. 본 논문에서는 물체간의 8 방향 위치 관계 정보를 이용하여 영상을 검색하는 시스템을 위한 질의 변환 알고리즘을 제안한다. 제안된 알고리즘은 영상내에 존재하는 물체들간의 위치 관계에 추이성(transitivity)이 존재하는 경우 정보가 중복된다는 사실로부터, 질의에 존재하는 추이성을 모두 제거함으로써 질의 영상을 최소 에지의 그래프로 변환한다. 제안된 알고리즘에 의해 생성된 프라임 에지 그래프는 동일한 위상 관계(topology)를 표현하는 그래프 중 최소 개수의 에지를 가지게 되므로 검색 중의 위치 관계 비교 회수를 최적화 할 수 있다. 실험 결과, 위치 관계의 추이성을 고려하지 않은 기존 알고리즘에 비해 평균 비교 회수를 크게 감소시켜 탐색 모듈의 효율을 향상시킴을 알 수 있다
Jo, Hyun-Woo;Kim, Ji-Won;Lim, Chul-Hee;Song, Chol-Ho;Lee, Woo-Kyun
대한원격탐사학회지
/
제34권4호
/
pp.661-670
/
2018
This study aims to develop a methodology of convolutional neural networks (CNNs) to produce thematic maps from remote sensing data. Optimizing the image size for CNNs was studied, since the size of the image affects to accuracy, working as hyper-parameter. The selected study area is Mt. Ung, located in Dangjin-si, Chungcheongnam-do, South Korea, consisting of both coniferous forest and deciduous forest. Spatial structure analysis and the classification of forest type using CNNs was carried in the study area at a diverse range of scales. As a result of the spatial structure analysis, it was found that the local variance (LV) was high, in the range of 7.65 m to 18.87 m, meaning that the size of objects in the image is likely to be with in this range. As a result of the classification, the image measuring 15.81 m, belonging to the range with highest LV values, had the highest classification accuracy of 85.09%. Also, there was a positive correlation between LV and the accuracy in the range under 15.81 m, which was judged to be the optimal image size. Therefore, the trial and error selection of the optimum image size could be minimized by choosing the result of the spatial structure analysis as the starting point. This study estimated the optimal image size for CNNs using spatial structure analysis and found that this can be used to promote the application of deep-learning in remote sensing.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.