• Title/Summary/Keyword: spatial neighbor

Search Result 169, Processing Time 0.026 seconds

An Enhanced Density and Grid based Spatial Clustering Algorithm for Large Spatial Database (대용량 공간데이터베이스를 위한 확장된 밀도-격자 기반의 공간 클러스터링 알고리즘)

  • Gao, Song;Kim, Ho-Seok;Xia, Ying;Kim, Gyoung-Bae;Bae, Hae-Young
    • The KIPS Transactions:PartD
    • /
    • v.13D no.5 s.108
    • /
    • pp.633-640
    • /
    • 2006
  • Spatial clustering, which groups similar objects based on their distance, connectivity, or their relative density in space, is an important component of spatial data mining. Density-based and grid-based clustering are two main clustering approaches. The former is famous for its capability of discovering clusters of various shapes and eliminating noises, while the latter is well known for its high speed. Clustering large data sets has always been a serious challenge for clustering algorithms, because huge data set would make the clustering process extremely costly. In this paper, we propose an enhanced Density-Grid based Clustering algorithm for Large spatial database by setting a default number of intervals and removing the outliers effectively with the help of a proper measurement to identify areas of high density in the input data space. We use a density threshold DT to recognize dense cells before neighbor dense cells are combined to form clusters. When proposed algorithm is performed on large dataset, a proper granularity of each dimension in data space and a density threshold for recognizing dense areas can improve the performance of this algorithm. We combine grid-based and density-based methods together to not only increase the efficiency but also find clusters with arbitrary shape. Synthetic datasets are used for experimental evaluation which shows that proposed method has high performance and accuracy in the experiments.

A Study on Augmented Reality-based Positioning Service Using Machine Learning (머신 러닝을 이용한 증강현실 기반 측위 서비스에 관한 연구)

  • Yoon, Chang-Pyo;Lee, Hae-Jun;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.313-315
    • /
    • 2017
  • Recently, application fields using machine learning have been widely expanded. In addition to the spread of smart devices, application services using location-based services are also in demand. However, it is difficult to provide the application service through the positioning in the indoor environment such as the specific space where the disaster situation where the information for positioning can not be collected and the actual location location information can not be used. In this situation, using the spatial information composed of the marker information and the markers of the neighbor registered in the augmented reality environment, positioning at a specific situation or position becomes possible. At this time, it is possible to learn the operation that makes the configuration of the marker-based spatial information correspond to the actual position through the machine learning, and the optimal positioning result can be obtained by minimizing the error. In this paper, we study the positioning methods required in specific situations using machine learning for learning of augmented reality markers and spatial information.

  • PDF

Image Restoration of Remote Sensing High Resolution Imagery Using Point-Jacobian Iterative MAP Estimation (Point-Jacobian 반복 MAP 추정을 이용한 고해상도 영상복원)

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.817-827
    • /
    • 2014
  • In the satellite remote sensing, the operational environment of the satellite sensor causes image degradation during the image acquisition. The degradation results in noise and blurring which badly affect identification and extraction of useful information in image data. This study proposes a maximum a posteriori (MAP) estimation using Point-Jacobian iteration to restore a degraded image. The proposed method assumes a Gaussian additive noise and Markov random field of spatial continuity. The proposed method employs a neighbor window of spoke type which is composed of 8 line windows at the 8 directions, and a boundary adjacency measure of Mahalanobis square distance between center and neighbor pixels. For the evaluation of the proposed method, a pixel-wise classification was used for simulation data using various patterns similar to the structure exhibited in high resolution imagery and an unsupervised segmentation for the remotely-sensed image data of 1 mspatial resolution observed over the north area of Anyang in Korean peninsula. The experimental results imply that it can improve analytical accuracy in the application of remote sensing high resolution imagery.

A Study to Solve the Discontinuity of Network RTK Correction for Vehicle (이동형 항체를 위한 Network RTK 보정정보 불연속 해소 방안)

  • Park, Byung-Woon;Song, June-Sol;Kee, Chang-Don
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.78-79
    • /
    • 2012
  • To improve moving vehicles' accuracy, one-way Network RTK which guarantees high accuracy and integrity regardless the distance from rovers to Reference Station(RS) is being considered. Correction of one-way Network RTK can be generated only after constructing RS network surrounding the rover, therefore a correction discontinuity is inevitably occurred when the RS set has been changed. The discontinuity is not eliminated by the DD(Double Difference) method, and our simulation shows that it causes 13cm(horizontal) and 48cm(vertical) position error. We suggest three solutions to reduce this discontinuity, which are identification of master RS with neighbor networks, duplication of communication module to receive corrections from other network, and ambiguity levelling between neighbor networks.

  • PDF

Design of an Efficient Parallel High-Dimensional Index Structure (효율적인 병렬 고차원 색인구조 설계)

  • Park, Chun-Seo;Song, Seok-Il;Sin, Jae-Ryong;Yu, Jae-Su
    • Journal of KIISE:Databases
    • /
    • v.29 no.1
    • /
    • pp.58-71
    • /
    • 2002
  • Generally, multi-dimensional data such as image and spatial data require large amount of storage space. There is a limit to store and manage those large amount of data in single workstation. If we manage the data on parallel computing environment which is being actively researched these days, we can get highly improved performance. In this paper, we propose a parallel high-dimensional index structure that exploits the parallelism of the parallel computing environment. The proposed index structure is nP(processor)-n$\times$mD(disk) architecture which is the hybrid type of nP-nD and lP-nD. Its node structure increases fan-out and reduces the height of a index tree. Also, A range search algorithm that maximizes I/O parallelism is devised, and it is applied to K-nearest neighbor queries. Through various experiments, it is shown that the proposed method outperforms other parallel index structures.

Block Classification of Document Images by Block Attributes and Texture Features (블록의 속성과 질감특징을 이용한 문서영상의 블록분류)

  • Jang, Young-Nae;Kim, Joong-Soo;Lee, Cheol-Hee
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.7
    • /
    • pp.856-868
    • /
    • 2007
  • We propose an effective method for block classification in a document image. The gray level document image is converted to the binary image for a block segmentation. This binary image would be smoothed to find the locations and sizes of each block. And especially during this smoothing, the inner block heights of each block are obtained. The gray level image is divided to several blocks by these location informations. The SGLDM(spatial gray level dependence matrices) are made using the each gray-level document block and the seven second-order statistical texture features are extracted from the (0,1) direction's SGLDM which include the document attributes. Document image blocks are classified to two groups, text and non-text group, by the inner block height of the block at the nearest neighbor rule. The seven texture features(that were extracted from the SGLDM) are used for the five detail categories of small font, large font, table, graphic and photo blocks. These document blocks are available not only for structure analysis of document recognition but also the various applied area.

  • PDF

The Optimized Detection Range of RFID-based Positioning System using k-Nearest Neighbor Algorithm

  • Kim, Jung-Hwan;Heo, Joon;Han, Soo-Hee;Kim, Sang-Min
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.270-271
    • /
    • 2008
  • The positioning technology for a moving object is an important and essential component of ubiquitous communication computing environment and applications, for which Radio Frequency IDentification Identification(RFID) is has been considered as also a core technology for ubiquitous wireless communication. RFID-based positioning system calculates the position of moving object based on k-nearest neighbor(k-nn) algorithm using detected k-tags which have known coordinates and k can be determined according to the detection range of RFID system. In this paper, RFID-based positioning system determines the position of moving object not using weight factor which depends on received signal strength but assuming that tags within the detection range always operate and have same weight value. Because the latter system is much more economical than the former one. The geometries of tags were determined with considerations in huge buildings like office buildings, shopping malls and warehouses, so they were determined as the line in 1-Dimensional space, the square in 2-Dimensional space and the cubic in 3-Dimensional space. In 1-Dimensional space, the optimal detection range is determined as 125% of the tag spacing distance through the analytical and numerical approach. Here, the analytical approach means a mathematical proof and the numerical approach means a simulation using matlab. But the analytical approach is very difficult in 2- and 3-Dimensional space, so through the numerical approach, the optimal detection range is determined as 134% of the tag spacing distance in 2-Dimensional space and 143% of the tag spacing distance in 3-Dimensional space. This result can be used as a fundamental study for designing RFID-based positioning system.

  • PDF

A Fast Motion Estimation Scheme using Spatial and Temporal Characteristics (시공간 특성을 이용한 고속 움직임 백터 예측 방법)

  • 노대영;장호연;오승준;석민수
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.4
    • /
    • pp.237-247
    • /
    • 2003
  • The Motion Estimation (ME) process is an important part of a video encoding systems since they can significantly reduce bitrate with keeping the output quality of an encoded sequence. Unfortunately this process may dominate the encoding time using straightforward full search algorithm (FS). Up to now, many fast algorithms can reduce the computation complexity by limiting the number of searching locations. This is accomplished at the expense of less accuracy of motion estimation. In this paper, we introduce a new fast motion estimation method based on the spatio-temporal correlation of adjacent blocks. A reliable predicted motion vector (RPMV) is defined. The reliability of RPMV is shown on the basis of motion vectors achieved by FS. The scalar and the direction of RPMV are used in our proposed scheme. The experimental results show that the proposed method Is about l1~14% faster than the nearest neighbor method which is a wellknown conventional fast scheme.

Estimation of Aboveground Biomass Carbon Stock Using Landsat TM and Ratio Images - $k$NN algorithm and Regression Model Priority (Landsat TM 위성영상과 비율영상을 적용한 지상부 탄소 저장량 추정 - $k$NN 알고리즘 및 회귀 모델을 중점적으로)

  • Yoo, Su-Hong;Heo, Joon;Jung, Jae-Hoon;Han, Soo-Hee;Kim, Kyoung-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.2
    • /
    • pp.39-48
    • /
    • 2011
  • Global warming causes the climate change and makes severe damage to ecosystem and civilization Carbon dioxide greatly contributes to global warming, thus many studies have been conducted to estimate the forest biomass carbon stock as an important carbon storage. However, more studies are required for the selection and use of technique and remotely sensed data suitable for the carbon stock estimation in Korea In this study, the aboveground forest biomass carbon stocks of Danyang-Gun in South Korea was estimated using $k$NN($k$-Nearest Neighbor) algorithm and regression model, then the results were compared. The Landsat TM and 5th NFI(National Forest Inventory) data were prepared, and ratio images, which are effective in topographic effect correction and distinction of forest biomass, were also used. Consequently, it was found that $k$NN algorithm was better than regression model to estimate the forest carbon stocks in Danyang-Gun, and there was no significant improvement in terms of accuracy for the use of ratio images.

Misclassified Area Detection Algorithm for Aerial LiDAR Digital Terrain Data (항공 라이다 수치지면자료의 오분류 영역 탐지 알고리즘)

  • Kim, Min-Chul;Noh, Myoung-Jong;Cho, Woo-Sug;Bang, Ki-In;Park, Jun-Ku
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.1
    • /
    • pp.79-86
    • /
    • 2011
  • Recently, aerial laser scanning technology has received full attention in constructing DEM(Digital Elevation Model). It is well known that the quality of DEM is mostly influenced by the accuracy of DTD(Digital Terrain Data) extracted from LiDAR(Light Detection And Ranging) raw data. However, there are always misclassified data in the DTD generated by automatic filtering process due to the limitation of automatic filtering algorithm and intrinsic property of LiDAR raw data. In order to eliminate the misclassified data, a manual filtering process is performed right after automatic filtering process. In this study, an algorithm that detects automatically possible misclassified data included in the DTD from automatic filtering process is proposed, which will reduce the load of manual filtering process. The algorithm runs on 2D grid data structure and makes use of several parameters such as 'Slope Angle', 'Slope DeltaH' and 'NNMaxDH(Nearest Neighbor Max Delta Height)'. The experimental results show that the proposed algorithm quite well detected the misclassified data regardless of the terrain type and LiDAR point density.