• Title/Summary/Keyword: spatial interpolation.

Search Result 410, Processing Time 0.026 seconds

Evaluation of Reproductive Growth in a Mature Stand of Korean Pine under Simulated Climatic Condition (국지기후가 잣나무 성숙임분의 생식생장에 미치는 영향분석)

  • 김일현;신만용;김영채;전상근
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.185-198
    • /
    • 2001
  • This study was conducted to reveal the effects of local climatic conditions on reproductive growth in a mature stand of Korean white pine based on climatic estimates. For this, the reproductive growth such as production and characteristics of cone and seed were first measured and summarized for seven years from 1974 to 1980. The local climatic conditions in the study site were also estimated by both a topoclimatological method and a spatial statistical technique. The local climatic conditions were then correlated with and regressed on the growth factors to reveal the relationships between the climatic estimates and the reproductive growth. Average number of conelet formation per tree showed highly negative correlation with some climatic variables related to minimum temperature in the year of flower bud differentiation. Especially, the most significant negative correlation were found between average of the minimum temperature for June and July of flower bud differentiation year and the number of conelet formation. There was no significant correlation between the number of cone production and climatic variables. However, total precipitation from December of the flowering year to February of the cone production year showed the most high correlation (r=0.6036) with the number of cone production. It was found that significant climatic variables affecting the amount of cone drop and cone drop percentage were the sum of cloudy days from June of the flowering year to August of the cone production year. Positive correlation was significantly recognized between the average weight of empty seed per cone and total precipitation from December of the flowering year to February of the cone production year. For the percentage of empty seed, five climatic variables among 19 variables were significantly correlated at 10% level. The average weight of a cone showed negative correlation with total precipitation from June of the flowering year to August of the cone production year. It was also found that average weight of a seed had highly negative correlation with total precipitation from December of the flowering year to February of the cone production year. The average weight of cone coat was negatively correlated with two climatic variables derived from clear days, which are sum of clear days from November of the flowering year to March of the cone production year and sum of clear days from December of the flowering year to February of the cone production year. On the other hand, it showed positive correlation with mean temperature of May in the flowering year. The exactly same results were obtained in correlation analysis for the percentage of cone coat.

  • PDF

Evaluation of Vegetative Growth in a Mature Stand of Korean Pine under Simulated Climatic condition (복원된 국지기후에 근거한 잣나무 성숙임분의 영양생장에 미치는 국지기후의 영향)

  • 김일현;신만용;김영채;전상근
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.2
    • /
    • pp.105-113
    • /
    • 2001
  • This study was conducted to reveal the effects of local climatic conditions on the vegetative growth in a mature stand of Korean white pine based on climatic estimates. For this, the annual increments of stand variables such as DBH, height, basal area and volume were measured and estimated for seven years from 1974 to 1980. The local climatic conditions in the study site were also estimated by both a topoclimatological method and a spatial statistical technique. The local climatic conditions were then correlated with and regressed on the growth factors to reveal the relationships between the climatic estimates and the growth. It is found that relatively high temperatures had positive effects on the diameter growth. The yearly diameter growth increased when each of mean, maximum, and minimum temperature during the growing season was high. Height growth showed positively significant correlation with three climatic variables. The most important variable influencing height growth was the average of maximum temperature for 10 months from January to October. It means that the higher the average of maximum temperature for 10 months from January to October is, the more height growth of Korean white pine increases. Other climatic variables related to height growth were average of minimum temperature for 3 months in the early growing season and mean relative humidity for the growing season. Six climatic variables related to temperature had effects on basal area increment and all of them were positively correlated with basal area increment. Especially, temperatures from January to March were important factors affecting the basal area increment. In volume increment, high correlation was also recognized with most of temperature variables. This tendency was the same as the results in diameter and hight increments. This means that the volume growth increases when temperatures during the growing season are relatively high.

  • PDF

Groundwater Recharge Evaluation on Yangok-ri Area of Hongseong Using a Distributed Hydrologic Model (VELAS) (분포형 수문모형(VELAS)을 이용한 홍성 양곡리 일대 지하수 함양량 평가)

  • Ha, Kyoochul;Park, Changhui;Kim, Sunghyun;Shin, Esther;Lee, Eunhee
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.161-176
    • /
    • 2021
  • In this study, one of the distributed hydrologic models, VELAS, was used to analyze the variation of hydrologic elements based on water balance analysis to evaluate the groundwater recharge in more detail than the annual time scale for the past and future. The study area is located in Yanggok-ri, Seobu-myeon, Hongseong-gun, Chungnam-do, which is very vulnerable to drought. To implement the VELAS model, spatial characteristic data such as digital elevation model (DEM), vegetation, and slope were established, and GIS data were constructed through spatial interpolation on the daily air temperature, precipitation, average wind speed, and relative humidity of the Korea Meteorological Stations. The results of the analysis showed that annual precipitation was 799.1-1750.8 mm, average 1210.7 mm, groundwater recharge of 28.8-492.9 mm, and average 196.9 mm over the past 18 years from 2001 to 2018 in the study area. Annual groundwater recharge rate compared to annual precipitation was from 3.6 to 28.2% with a very large variation and average 14.9%. By the climate change RCP 8.5 scenario, the annual precipitation from 2019 to 2100 was 572.8-1996.5 mm (average 1078.4 mm) and groundwater recharge of 26.7-432.5 mm (average precipitation 16.2%). The annual groundwater recharge rates in the future were projected from 2.8% to 45.1%, 18.2% on average. The components that make up the water balance were well correlated with precipitation, especially in the annual data rather than the daily data. However, the amount of evapotranspiration seems to be more affected by other climatic factors such as temperature. Groundwater recharge in more detailed time scale rather than annual scale is expected to provide basic data that can be used for groundwater development and management if precipitation are severely varied by time, such as droughts or floods.

History and Future Direction for the Development of Rice Growth Models in Korea (벼 작물생육모형 국내 도입 활용과 앞으로의 연구 방향)

  • Kim, Junhwan;Sang, Wangyu;Shin, Pyeong;Baek, Jaekyeong;Cho, Chongil;Seo, Myungchul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.167-174
    • /
    • 2019
  • A process-oriented crop growth model can simulate the biophysical process of rice under diverse environmental and management conditions, which would make it more versatile than an empirical crop model. In the present study, we examined chronology and background of the development of the rice growth models in Korea, which would provide insights on the needs for improvement of the models. The rice crop growth models were introduced in Korea in the late 80s. Until 2000s, these crop models have been used to simulate the yield in a specific area in Korea. Since then, improvement of crop growth models has been made to take into account biological characteristics of rice growth and development in more detail. Still, the use of the crop growth models has been limited to the assessment of climate change impact on crop production. Efforts have been made to apply the crop growth model, e.g., the CERES-Rice model, to develop decision support system for crop management at a farm level. However, the decision support system based on a crop growth model was attractive to a small number of stakeholders most likely due to scarcity of on-site weather data and reliable parameter sets for cultivars grown in Korea. The wide use of the crop growth models would be facilitated by approaches to extend spatial availability of reliable weather data, which could be either measured on-site or estimates using spatial interpolation. New approaches for calibration of cultivar parameters for new cultivars would also help lower hurdles to crop growth models.

A Joint Application of DRASTIC and Numerical Groundwater Flow Model for The Assessment of Groundwater Vulnerability of Buyeo-Eup Area (DRASTIC 모델 및 지하수 수치모사 연계 적용에 의한 부여읍 일대의 지하수 오염 취약성 평가)

  • Lee, Hyun-Ju;Park, Eun-Gyu;Kim, Kang-Joo;Park, Ki-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.77-91
    • /
    • 2008
  • In this study, we developed a technique of applying DRASTIC, which is the most widely used tool for estimation of groundwater vulnerability to the aqueous phase contaminant infiltrated from the surface, and a groundwater flow model jointly to assess groundwater contamination potential. The developed technique is then applied to Buyeo-eup area in Buyeo-gun, Chungcheongnam-do, Korea. The input thematic data of a depth to water required in DRASTIC model is known to be the most sensitive to the output while only a few observations at a few time schedules are generally available. To overcome this practical shortcoming, both steady-state and transient groundwater level distributions are simulated using a finite difference numerical model, MODFLOW. In the application for the assessment of groundwater vulnerability, it is found that the vulnerability results from the numerical simulation of a groundwater level is much more practical compared to cokriging methods. Those advantages are, first, the results from the simulation enable a practitioner to see the temporally comprehensive vulnerabilities. The second merit of the technique is that the method considers wide variety of engaging data such as field-observed hydrogeologic parameters as well as geographic relief. The depth to water generated through geostatistical methods in the conventional method is unable to incorporate temporally variable data, that is, the seasonal variation of a recharge rate. As a result, we found that the vulnerability out of both the geostatistical method and the steady-state groundwater flow simulation are in similar patterns. By applying the transient simulation results to DRASTIC model, we also found that the vulnerability shows sharp seasonal variation due to the change of groundwater recharge. The change of the vulnerability is found to be most peculiar during summer with the highest recharge rate and winter with the lowest. Our research indicates that numerical modeling can be a useful tool for temporal as well as spatial interpolation of the depth to water when the number of the observed data is inadequate for the vulnerability assessments through the conventional techniques.

Development of Preliminary Quality Assurance Software for $GafChromic^{(R)}$ EBT2 Film Dosimetry ($GafChromic^{(R)}$ EBT2 Film Dosimetry를 위한 품질 관리용 초기 프로그램 개발)

  • Park, Ji-Yeon;Lee, Jeong-Woo;Choi, Kyoung-Sik;Hong, Semie;Park, Byung-Moon;Bae, Yong-Ki;Jung, Won-Gyun;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.113-119
    • /
    • 2010
  • Software for GafChromic EBT2 film dosimetry was developed in this study. The software provides film calibration functions based on color channels, which are categorized depending on the colors red, green, blue, and gray. Evaluations of the correction effects for light scattering of a flat-bed scanner and thickness differences of the active layer are available. Dosimetric results from EBT2 films can be compared with those from the treatment planning system ECLIPSE or the two-dimensional ionization chamber array MatriXX. Dose verification using EBT2 films is implemented by carrying out the following procedures: file import, noise filtering, background correction and active layer correction, dose calculation, and evaluation. The relative and absolute background corrections are selectively applied. The calibration results and fitting equation for the sensitometric curve are exported to files. After two different types of dose matrixes are aligned through the interpolation of spatial pixel spacing, interactive translation, and rotation, profiles and isodose curves are compared. In addition, the gamma index and gamma histogram are analyzed according to the determined criteria of distance-to-agreement and dose difference. The performance evaluations were achieved by dose verification in the $60^{\circ}$-enhanced dynamic wedged field and intensity-modulated (IM) beams for prostate cancer. All pass ratios for the two types of tests showed more than 99% in the evaluation, and a gamma histogram with 3 mm and 3% criteria was used. The software was developed for use in routine periodic quality assurance and complex IM beam verification. It can also be used as a dedicated radiochromic film software tool for analyzing dose distribution.

A Study on the Precise Lineament Recovery of Alluvial Deposits Using Satellite Imagery and GIS (충적층의 정밀 선구조 추출을 위한 위성영상과 GIS 기법의 활용에 관한 연구)

  • 이수진;석동우;황종선;이동천;김정우
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.363-368
    • /
    • 2003
  • We have successfully developed a more effective algorithm to extract the lineament in the area covered by wide alluvial deposits characterized by a relatively narrow range of brightness in the Landsat TM image, while the currently used algorithm is limited to the mountainous areas. In the new algorithm, flat areas mainly consisting of alluvial deposits were selected using the Local Enhancement from the Digital Elevation Model (DEM). The aspect values were obtained by 3${\times}$3 moving windowing of Zevenbergen & Thorno's Method, and then the slopes of the study area were determined using the aspect values. After the lineament factors in the alluvial deposits were revealed by comparing the threshold values, the first rank lineament under the alluvial deposits were extracted using the Hough transform In order to extract the final lineament, the lowest points under the alluvial deposits in a given topographic section perpendicular to the first rank lineament were determined through the spline interpolation, and then the final lineament were chosen through Hough transform using the lowest points. The algorithm developed in this study enables us to observe a clearer lineament in the areas covered by much larger alluvial deposits compared with the results extracted using the conventional existing algorithm. There exists, however, some differences between the first rank lineament, obtained using the aspect and the slope, and the final lineament. This study shows that the new algorithm more effectively extracts the lineament in the area covered with wide alluvlal deposits than in the areas of converging slope, areas with narrow alluvial deposits or valleys.

  • PDF

Effects of Local Climatic Conditions on the Early Growth in Korean White Pine (Pinus koraiensis Sieb. et Zucc.) Stands -Relation between Annual Increment and Local Climatic Conditions- (지역별 잣나무 초기생장에 미치는 미기후의 영향 - 연년생장과 미기후와의 관계-)

  • Chon Sang- Keun;Shin Man Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.1
    • /
    • pp.41-51
    • /
    • 1999
  • This study was conducted to investigate the effects of local climatic conditions on the annual increment of Korean white pine planted in Gapyung and Yaungdong. For this, stand variables such as mean DBH, mean height, basal area per hectare, and volume per hectare by stand age were measured and summarized for each locality. Based on these statistics, annual increments for 8 years from stand age 10 to 18 were calculated for each of stand variables. A topoclimatological technique which makes use of empirical relationships between the topography and the weather in study sites was applied to produce normal estimates of monthly mean, maximum, minimum temperatures, relative humidity, precipitation, and hours of sunshine. Then, the yearly climatic variables from 1990 to 1997 for each study site were derived from the spatial interpolation procedures based on inverse- distance weighting of the observed deviation from the climatic normals at the nearest 11 standard weather stations. From these estimates, 17 weather variables such as warmth index, coldness index, index of aridity etc., which affect the tree growth, were computed on yearly base for each locality. The deviations of measured annual increments from the expected annual increments for 8 years based on yield table of Korean white pine were then correlated with and regressed on the yearly weather variables to examine effects of local climatic conditions on the growth. Gapyung area provides better conditions for the growth of Korean white pine in the early stage than Youngdong area. This indicates that the conditions such as low temperature, high relative humidity, and large amount of precipitation provide favor environment for the early growth of Korean white pine. A ccording to the correlation and regression an analysis using local climatic conditions and annual increments, the growth pattern of Gapyung area corresponds to this tendency. However, it was found that the relationship between annual increments and local climatic conditions in Youngdong area shows different tendency from Gapyung. These results mean that the yearly growth pattern could not sufficiently be explained by climatic conditions with high variance in yearly weather variables. In addition, the poor growth in Youngdong area might not only be affected by climatic conditions, but also by other environmental factors such as site quality.

  • PDF

Plant Hardiness Zone Mapping Based on a Combined Risk Analysis Using Dormancy Depth Index and Low Temperature Extremes - A Case Study with "Campbell Early" Grapevine - (최저기온과 휴면심도 기반의 동해위험도를 활용한 'Campbell Early' 포도의 내동성 지도 제작)

  • Chung, U-Ran;Kim, Soo-Ock;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.4
    • /
    • pp.121-131
    • /
    • 2008
  • This study was conducted to delineate temporal and spatial patterns of potential risk of cold injury by combining the short-term cold hardiness of Campbell Early grapevine and the IPCC projected climate winter season minimum temperature at a landscape scale. Gridded data sets of daily maximum and minimum temperature with a 270m cell spacing ("High Definition Digital Temperature Map", HD-DTM) were prepared for the current climatological normal year (1971-2000) based on observations at the 56 Korea Meteorological Administration (KMA) stations using a geospatial interpolation scheme for correcting land surface effects (e.g., land use, topography, and elevation). The same procedure was applied to the official temperature projection dataset covering South Korea (under the auspices of the IPCC-SRES A2 and A1B scenarios) for 2071-2100. The dormancy depth model was run with the gridded datasets to estimate the geographical pattern of any changes in the short-term cold hardiness of Campbell Early across South Korea for the current and future normal years (1971-2000 and 2071-2100). We combined this result with the projected mean annual minimum temperature for each period to obtain the potential risk of cold injury. Results showed that both the land areas with the normal cold-hardiness (-150 and below for dormancy depth) and those with the sub-threshold temperature for freezing damage ($-15^{\circ}C$ and below) will decrease in 2071-2100, reducing the freezing risk. Although more land area will encounter less risk in the future, the land area with higher risk (>70%) will expand from 14% at the current normal year to 23 (A1B) ${\sim}5%$ (A2) in the future. Our method can be applied to other deciduous fruit trees for delineating geographical shift of cold-hardiness zone under the projected climate change in the future, thereby providing valuable information for adaptation strategy in fruit industry.

Minimizing Estimation Errors of a Wind Velocity Forecasting Technique That Functions as an Early Warning System in the Agricultural Sector (농업기상재해 조기경보시스템의 풍속 예측 기법 개선 연구)

  • Kim, Soo-ock;Park, Joo-Hyeon;Hwang, Kyu-Hong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.2
    • /
    • pp.63-77
    • /
    • 2022
  • Our aim was to reduce estimation errors of a wind velocity model used as an early warning system for weather risk management in the agricultural sector. The Rural Development Administration (RDA) agricultural weather observation network's wind velocity data and its corresponding estimated data from January to December 2020 were used to calculate linear regression equations (Y = aX + b). In each linear regression, the wind estimation error at 87 points and eight time slots per day (00:00, 03:00, 06:00, 09.00, 12.00, 15.00, 18.00, and 21:00) is the dependent variable (Y), while the estimated wind velocity is the independent variable (X). When the correlation coefficient exceeded 0.5, the regression equation was used as the wind velocity correction equation. In contrast, when the correlation coefficient was less than 0.5, the mean error (ME) at the corresponding points and time slots was substituted as the correction value instead of the regression equation. To enable the use of wind velocity model at a national scale, a distribution map with a grid resolution of 250 m was created. This objective was achieved b y performing a spatial interpolation with an inverse distance weighted (IDW) technique using the regression coefficients (a and b), the correlation coefficient (R), and the ME values for the 87 points and eight time slots. Interpolated grid values for 13 weather observation points in rural areas were then extracted. The wind velocity estimation errors for 13 points from January to December 2019 were corrected and compared with the system's values. After correction, the mean ME of the wind velocities reduced from 0.68 m/s to 0.45 m/s, while the mean RMSE reduced from 1.30 m/s to 1.05 m/s. In conclusion, the system's wind velocities were overestimated across all time slots; however, after the correction model was applied, the overestimation reduced in all time slots, except for 15:00. The ME and RMSE improved b y 33% and 19.2%, respectively. In our system, the warning for wind damage risk to crops is driven by the daily maximum wind speed derived from the daily mean wind speed obtained eight times per day. This approach is expected to reduce false alarms within the context of strong wind risk, by reducing the overestimation of wind velocities.