• Title/Summary/Keyword: spatial integration model

Search Result 177, Processing Time 0.029 seconds

A Study on Local Three-Dimensional Visualization Methodology for Effective Analysis of Construction Environments in Extreme Cold Regions (효과적인 극한지 건설환경 분석을 위한 현지 3차원 가시화 방안 연구)

  • Kim, Eui Myoung;Lee, Woo Sik;Hong, Chang Hee
    • Spatial Information Research
    • /
    • v.20 no.6
    • /
    • pp.129-137
    • /
    • 2012
  • For construction project in extreme cold region, it is essential to establish basic data on the site such as topographical data from the early stage of construction of planning and designing, and it is needed to frequently perform site investigation when necessary. However, extreme cold regions are characteristic of being at long distance and difficult in approaching, and special regions such as Antarctica, in particular, are hard to conduct site investigation. Although a site investigation may be conducted, those who can visit Antarctica are sufficiently limited so that most of the staff may participate in construction without knowledge of the site and increase the risk of errors in decision making or designing. In order to resolve such problems, the authors in this study identified methods of building wide-area topographical data and bedrock classification data of exposed areas via remote sensing and of building precise topographical data on the construction site. Also, the authors attempted to present methods by which such data can be managed and visualized integrally via three-dimensional GIS technology and all the participants in construction can learn sense of field and conduct necessary analysis as frequent as possible. The areas around the Jangbogo Antarctic Station were selected to be the research area for conducting effective integrational management and three-dimensional visualization of various spatial data such as wide-area digital elevation model, ortho-images, bedrock classification data, local precise digital elevation model, and site images. The results of this study may enable construction firms to analyze local environments for construction whenever they need for construction in extreme cold regions and then support construction work including decision making or designing.

A Study of Global Ocean Data Assimilation using VAF (VAF 변분법을 이용한 전구 해양자료 동화 연구)

  • Ahn, Joong-Bae;Yoon, Yong-Hoon;Cho, Eek-Hyun;Oh, He-Ram
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.69-78
    • /
    • 2005
  • ARCO and TAO data which supply three dimensional global ocean information are assimilated to the background field from a general circulation model, MOM3. Using a variational Analysis using Filter (VAF), which is a spatial variational filter designed to reduce computational time and space efficiently and economically, observed ARGO and TAO data are assimilated to the OGCM-generated background sea temperature for the generation of initial condition of the model. For the assessment of the assimilation impact, a comparative experiment has been done by integrating the model from different intial conditions: one from ARGO-, TAO-data assimilated initial condition and the other from background state without assimilation. The assimilated analysis field not only depicts major oceanic features more realistically but also reduces several systematic model bias that appear in every current OGCMs experiments. From the 10-month of model integrations with and without assimilated initial conditions, it is found that the major assimilated characteristics in sea temperature appeared in the initial field remain persistently throughout the integration. Such implies that the assimilated characteristics of the reduced sea temperature bias is to last in the integration without rapid restoration to the non-assimilated OGCM integration state by dispersing mass field in the form of internal gravity waves. From our analysis, it is concluded that the data assimilation method adapted in this study to MOM3 is reasonable and applicable with dynamical consistency. The success in generating initial condition with ARGO and TAO data assimilation has significant implication upon the prediction of the long-term climate and weather using ocean-atmosphere coupled model.

Enhancing Project Integration and Interoperability of GIS and BIM Based on IFC (IFC 기반 GIS와 BIM 프로젝트 통합관리 및 상호 운용성 강화)

  • Kim, Tae-Hee;Kim, Tae-Hyun;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.54 no.1
    • /
    • pp.89-102
    • /
    • 2024
  • The recent advancements in Smart City and Digital Twin technologies have highlighted the critical role of integrating GIS and BIM in urban planning and construction projects. This integration ensures the consistency and accuracy of information, facilitating smooth information exchange. However, achieving interoperability requires standardization and effective project integration management strategies. This study proposes interoperability solutions for the integration of GIS and BIM for managing various projects. The research involves an in-depth analysis of the IFC schema and data structures based on the latest IFC4 version and proposes methods to ensure the consistency of reference point coordinates and coordinate systems. The study was conducted by setting the EPSG:5186 coordinate system, used by the National Geographic Information Institute's digital topographic map, and applying virtual shift origin coordinates. Through BIMvision, the results of the shape and error check coordinates' movement in the BIM model were reviewed, confirming that the error check coordinates moved consistently with the reference point coordinates. Additionally, it was verified that even when the coordinate system was changed to EPSG:5179 used by Naver Map and road name addresses, or EPSG:5181 used by Kakao Map, the BIM model's shape and coordinates remained consistently unchanged. Notably, by inputting the EPSG code information into the IFC file, the potential for coordinate system interoperability between projects was confirmed. Therefore, this study presents an integrated and systematic management approach for information sharing, automation processes, enhanced collaboration, and sustainable development of GIS and BIM. This is expected to improve compatibility across various software platforms, enhancing information consistency and efficiency across multiple projects.

Code Development for Computation of Turbulent Flow around a Ship Model with Free-Surface (자유표면을 포함한 선체주위 난류유동 해석 코드 개발)

  • Kim J.J.;Kim H.T.;Van S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.145-155
    • /
    • 1998
  • A computer code has been developed for the computation of the viscous flow around a ship model with the free surface. In this code, the incompressible Reynolds-averaged Navier-Stokes equations are solved numerically by a finite difference method which employes second-order finite differences for the spatial discretization and a four-stage Runge-Kutta scheme for the temporal integration of the governing equations. For the turbulence closure, a modified version of the Baldwin-Lomax model is exploited. The location of the free surface is determined by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and the boundary-fitted grid is generated at each time step so that one of the grid surfaces always coincides with the free surface. An inviscid approximation of the dynamic free-surface boundary condition is applied as the boundary conditions for the velocity and pressure on the free surface. To validate the computational method and the computer code developed in the present study, the numerical computations are carried out for both Wigley parabolic hull and Series 60 $C_B=0.6$ ship model and the computational results are compared with the experimental data.

  • PDF

Development of Finite Element Method for the Extended Boussinesq Equations (확장형 Boussinesq 방정식의 유한요소모형 개발)

  • Woo, Seung-Buhm;Choi, Young-Kwang;Yoon, Byung-Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.133-141
    • /
    • 2007
  • A finite element model is developed for the extended Boussinesq equations that is capable of simulating the dynamics of long and short waves. Galerkin weighted residual method and the introduction of auxiliary variables for 3rd spatial derivative terms in the governing equations are used for the model development. The Adams-Bashforth-Moulton Predictor Corrector scheme is used as a time integration scheme for the extended Boussinesq finite element model so that the truncation error would not produce any non-physical dispersion or dissipation. This developed model is applied to the problems of solitary wave propagation. Predicted results is compared to available analytical solutions and laboratory measurements. A good agreement is observed.

Land Use Analysis of Road Circumstance using Remote Sensing and GIS (RS와 GIS를 이용한 도로주변의 토지이용분석)

  • Choi, Seok-Keun;Hwang, Eui-Jin;Park, Kyeong-Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.2
    • /
    • pp.133-140
    • /
    • 2007
  • In this study we did the monitor the change of a urban land coverage to forecast and to deal with various city problems according to urban development. The amount of change of a land coverage used the landsat satellite image and was calculated by analyzing the situation and the distribution aspect of land cover of the road circumstance by time series. We interpreted two images which are taken picture different time and calculated the amount of the area change through integration of the spatial analysis technique of remote sensing and GIS for this study. We could create the development model of the urban area by continuous analysis of satellite and geographic data.

DESIGN AND IMPLEMENTATION OF MOVING OBJECTS MANAGEMENT SYSTEM APPLYING OPEN GOESPATIAL DATA ENCODING

  • Lee, Hye-Jin;Lee, Hyun-Ah;Park, Jong-Heung
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.663-666
    • /
    • 2005
  • The Geography Markup Language (GML) is an XML encoding for the transport and storage of geographic information, including both the geometry and properties of geographic features. This paper uses the GML to provide extendibility and interoperability of spatial data in moving objects management system. Since the purpose of the system is to provide locations of the moving objects in the web and mobile environments, we used the GML both for presenting map data and trajectories of the moving objects. The proposed system is composed of Location Data Interface, Moving Objects Engine, and Web/Mobile Presentation Interface. We utilized the concept of Web Map Server, that is web mapping technology of OGC (Open Geospatial Consortium), to integrate map data and the location information of the moving objects. In the process of the integration, we used the standard data model and interfaces while defining new application schema. Since our suggested system uses open spatial data encoding and interfaces, both extendibility and interoperability are guaranteed.

  • PDF

Urban Inundation Modeling and Its Damage Evaluation Based on Loose-coupling GIS (Loose-coupling GIS기반의 도시홍수 모의 및 피해액산정)

  • Kang, Sang-Hyeok
    • Spatial Information Research
    • /
    • v.18 no.1
    • /
    • pp.49-56
    • /
    • 2010
  • Considering the flood problem in urban areas, it is important to estimate disaster risk using accurate numerical analysis for inundation. In this study, it is carried out to calculate inundation depth in Samcheok city which suffered from serious flood damage in 2002. The urban flood model was developed by cording Manning n, elevation, and building's rare on ArcGIS for reducing error on data exchange, and applied for estimating flood damage by grid. This paper describes the extraction of sewer lines and buildings area, estimates its influence on flood inundation extent, and integrated 1D/2D flow to simulate inundation depth in high-density building area. This paper shows an integrated urban flood modeling including rainfall-runoff, inundation simulation, and mathematical flood damage estimation, and will serve drainage design for reducing its damage.

Hotspot Detection for Land Cover Changes Using Spatial Statistical Methods (공간통계기법을 이용한 토지피복변화의 핫스팟 탐지)

  • Lee, Jeong-Hun;Kim, Sang-Il;Han, Kyung-Soo;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.5
    • /
    • pp.601-611
    • /
    • 2011
  • Land cover changes are occurring for a variety of reasons such as urbanization, infrastructure construction, desertification, drought, flood, and so on. Many researchers have studied the cause and effect of land cover changes, and also the methods for change detection. However, most of the detection methods are based on the dichotomy of "change" and "not change" according a threshold value. In this paper, we present a change detection method with the integration of probability, spatial autocorrelation, and hotspot detection. We used the AMOEBA (A Multidirectional Ecotope-Based Algorithm) and developed the AMOEBA-CH (core hotspot) because the original algorithm tends to produce too many clusters. Our method considers the probability of land cover changes and the spatial interactions between each pixel and its neighboring pixels using a local spatial autocorrelation measure. The core hotspots of land cover changes can be delineated by a contiguity-dominance model of our AMOEBA-CH method. We tested our algorithm in a simulation for land cover changes using NDVI (Normalized Difference Vegetation Index) data in South Korea between 2000 and 2008.

A Study on PPGIS Integration Model for the promotion of G2C Interaction (정부와 국민간(G2C) 상호작용 제고를 위한 PPGIS 통합 모델에 관한 연구)

  • Shin, Dong-Bin;Park, Si-Young
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.363-368
    • /
    • 2007
  • 인터넷의 빠른 확산과 정보기술 패러다임의 변화로 사용자가 다양한 종류의 온라인 매체를 이용하여 콘텐츠 및 커뮤니티 제작 등에 능동적으로 참여하고, 이를 공유하는 양상이 사회 전반적으로 확대되고 있다. 이는 국가계획수립 부문에서도 예외는 아니어서 계획 주체와 국민간의 교류를 증진시키기 위해 등장한 개방형 계획패러다임과 맞물려 다양한 분야에서 PPGIS(Public Participation GIS)를 구현하기 위한 사업이 추진 중이다. 그러나 이러한 방법은 국가 주도의 단방향적인 참여기회 제공으로 단순한 의견수렴 수준에 머물고 있어 국민의 의견과 수요가 충분히 계획에 반영되지 못하며, 특정 계획분야에 국한되어 있는 실정이다. 그러므로 제공수단과 참여대상을 확대할 수 있도록 지리정보를 활용한 국민참여 기회를 제공하고, 이러한 결과가 GIS 활용분야 의사결정 과정에 적용될 수 있는 국가차원의 기반 마련이 요구된다. 따라서 이 연구는 정보기술 패러다임의 변화를 반영하여 사용자가 지리정보를 수단으로 자유롭게 의사를 개진하고, 정부가 이를 반영하여 계획을 수립할 수 있는 통합형 PPGIS 모델을 통한 G2C 상호작용 제고방안을 마련하고자 한다.

  • PDF