• Title/Summary/Keyword: spatial integration model

Search Result 172, Processing Time 0.029 seconds

A Study on Simulation tracking analysis for Spatial configuration analysis (공간구조분석을 위한 시뮬레이션 추적 분석에 관한 연구)

  • Park, Jong-Hyun;Lee, Jong-Ruyl
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.9 no.3
    • /
    • pp.95-102
    • /
    • 2009
  • An architectural space can be considered a life form that interconnects a number of architectural elements such as the humans who live in it. It is difficult to understand and evaluate the complexity of the interrelation between each element, but there have been various attempts to understand and evaluate this architectural space. The Space Syntax that emerged in 1980s has been studied and used more frequently than other methods. Space Syntax is the space analysis tool that analyzes the physical structure of space and represents it as a graph. Space syntax enables its various applications in space analysis by quantifying each spatial property of a whole structure, analyzing it systemically and objectively based on mathematical logic, and representing the results as a quantitative value. Integration of Space Syntax, a widely used index, reflects human behavior in spatial configuration. Meanwhile, there have been various studies in the field of architectural environmental psychology about the relationships between space and human behavior by applying behavioral science to architectural plan. One of the most widely used one is spatial behavior simulation which uses models and simulates the behavioral characteristics to anticipate practical situations and investigate the behavior related spatial problems. In this study, which focuses on the accessibility of the space syntax model, the usefulness of space will be analyzed through the simulation of human behavior that moves through each space. Furthermore, the validity of index will be verified by displaying several examples and compared with integration in space syntax, which represents the usefulness of space.

  • PDF

Indoor Spatial Awareness Project and Indoor Spatial Data Model

  • Li, Ki-Joune
    • Spatial Information Research
    • /
    • v.16 no.4
    • /
    • pp.441-453
    • /
    • 2008
  • With the rapid progress of location based services, GIS, and ubiquitous computing technologies, the space that we are dealing with is no longer limited to outdoor space but being extended to indoor space. Indoor space has some differences from outdoor space, therefore to provide integrated spaces and seamless services, it is required to establish new theories, data models, and systems. For this reason, ambitious project has been launched last year to establish a theoretical background, develop a core technologies and systems, and provide services of indoor spatial awareness. In this paper, we present an overall sketch on the project and major research topics. First, we present the ISA (indoor spatial awareness) project with its goal and research topics. Second, a simplified 3D spatial model, called prism model, is proposed as a basic data types and operators of indoor spatial DBMS. Third, a indoor feature data model, developed T. Kolbe et al. who is a member of this project team, is introduced in this paper. This model provides a basis for the integration of different spaces.

  • PDF

Bias Correction of Satellite-Based Precipitation Using Convolutional Neural Network

  • Le, Xuan-Hien;Lee, Gi Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.120-120
    • /
    • 2020
  • Spatial precipitation data is one of the essential components in modeling hydrological problems. The estimation of these data has achieved significant achievements own to the recent advances in remote sensing technology. However, there are still gaps between the satellite-derived rainfall data and observed data due to the significant dependence of rainfall on spatial and temporal characteristics. An effective approach based on the Convolutional Neural Network (CNN) model to correct the satellite-derived rainfall data is proposed in this study. The Mekong River basin, one of the largest river system in the world, was selected as a case study. The two gridded precipitation data sets with a spatial resolution of 0.25 degrees used in the CNN model are APHRODITE (Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation) and PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks). In particular, PERSIANN-CDR data is exploited as satellite-based precipitation data and APHRODITE data is considered as observed rainfall data. In addition to developing a CNN model to correct the satellite-based rain data, another statistical method based on standard deviations for precipitation bias correction was also mentioned in this study. Estimated results indicate that the CNN model illustrates better performance both in spatial and temporal correlation when compared to the standard deviation method. The finding of this study indicated that the CNN model could produce reliable estimates for the gridded precipitation bias correction problem.

  • PDF

Application of GIS-based Probabilistic Empirical and Parametric Models for Landslide Susceptibility Analysis (산사태 취약성 분석을 위한 GIS 기반 확률론적 추정 모델과 모수적 모델의 적용)

  • Park, No-Wook;Chi, Kwang-Hoon;Chung, Chang-Jo F.;Kwon, Byung-Doo
    • Economic and Environmental Geology
    • /
    • v.38 no.1
    • /
    • pp.45-55
    • /
    • 2005
  • Traditional GIS-based probabilistic spatial data integration models for landslide susceptibility analysis have failed to provide the theoretical backgrounds and effective methods for integration of different types of spatial data such as categorical and continuous data. This paper applies two spatial data integration models including non-parametric empirical estimation and parametric predictive discriminant analysis models that can directly use the original continuous data within a likelihood ratio framework. Similarity rates and a prediction rate curve are computed to quantitatively compare those two models. To illustrate the proposed models, two case studies from the Jangheung and Boeun areas were carried out and analyzed. As a result of the Jangheung case study, two models showed similar prediction capabilities. On the other hand, in the Boeun area, the parametric predictive discriminant analysis model showed the better prediction capability than that from the non-parametric empirical estimation model. In conclusion, the proposed models could effectively integrate the continuous data for landslide susceptibility analysis and more case studies should be carried out to support the results from the case studies, since each model has a distinctive feature in continuous data representation.

Spatial database architecture for organizing a unified information space for manned and unmanned aviation

  • Maksim Kalyagin;Yuri Bukharev
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.6
    • /
    • pp.545-554
    • /
    • 2023
  • The widespread introduction of unmanned aircrafts has led to the understanding of the need to organize a common information space for manned and unmanned aircrafts, which is reflected in the Russian Unmanned aircraft system Traffic Management (RUTM) project. The present article deals with the issues of spatial information database (DB) organization, which is the core of RUTM and provides storage of various data types (spatial, aeronautical, topographical, meteorological, vector, etc.) required for flight safety management. Based on the analysis of functional capabilities and types of work which it needs to ensure, the architecture of spatial information DB, including the base of source information, base of display settings, base of vector objects, base of tile packages and also a number of special software packages was proposed. The issues of organization of these DB, types and formats of data and ways of their display are considered in detail. Based on the analysis it was concluded that the optimal construction of the spatial DB for RUTM system requires a combination of different model variants and ways of organizing data structures.

Automated texture mapping for 3D modeling of objects with complex shapes --- a case study of archaeological ruins

  • Fujiwara, Hidetomo;Nakagawa, Masafumi;Shibasaki, Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1177-1179
    • /
    • 2003
  • Recently, the ground-based laser profiler is used for acquisition of 3D spatial information of a rchaeological objects. However, it is very difficult to measure complicated objects, because of a relatively low-resolution. On the other hand, texture mapping can be a solution to complement the low resolution, and to generate 3D model with higher fidelity. But, a huge cost is required for the construction of textured 3D model, because huge labor is demanded, and the work depends on editor's experiences and skills . Moreover, the accuracy of data would be lost during the editing works. In this research, using the laser profiler and a non-calibrated digital camera, a method is proposed for the automatic generation of 3D model by integrating these data. At first, region segmentation is applied to laser range data to extract geometric features of an object in the laser range data. Various information such as normal vectors of planes, distances from a sensor and a sun-direction are used in this processing. Next, an image segmentation is also applied to the digital camera images, which include the same object. Then, geometrical relations are determined by corresponding the features extracted in the laser range data and digital camera’ images. By projecting digital camera image onto the surface data reconstructed from laser range image, the 3D texture model was generated automatically.

  • PDF

A Review of Mobile Display Image Quality

  • Kim, Youn Jin
    • Information Display
    • /
    • v.15 no.5
    • /
    • pp.22-32
    • /
    • 2014
  • The current research intends to quantify the surround luminance effects on the shape of spatial luminance CSF and to propose an image quality evaluation method that is adaptive to both surround luminance and spatial frequency of a given stimulus. The proposed image quality method extends to a model called SQRI[8]. The non-linear behaviour of the HVS was taken into account by using CSF. This model can be defined as the square root integration of multiplication between display MTF and CSF. It is assumed that image quality can be determined by considering the MTF of the imaging system and the CSF of human observers. The CSF term in the original SQRI model was replaced by the surround adaptive CSF quantified in this study and it is divided by the Fourier transform of a given stimulus. A few limitations of the current work should be addressed and revised in the future study. First, more accurate model predictions can be achievable when the actual display MTF is measured and used instead of the approximation. Then, a further improvement to the model prediction accuracy can be made when chromatic adaptation of the HVS is taken into account[45-46].

Georeferencing for BIM and GIS Integration Using Building Boundary Polygon (BIM과 GIS 통합을 위한 건물 외곽 폴리곤 기반 Georeferencing)

  • Jwa, Yoon-Seok;Lee, Hyun-Ah;Kim, Min-Su;Choi, Jung-Sik
    • Journal of KIBIM
    • /
    • v.13 no.3
    • /
    • pp.30-38
    • /
    • 2023
  • Building Information Models(BIM) provides rich geometric and attribute information throughout the entire life cycle of a building and infrastructure object, while Geographic Information System(GIS) enables the detail analysis of urban issues based on the geo-spatial information in support of decision-making. The Integration of BIM and GIS data makes it possible to create a digital twin of the land in order to effectively manage smart cities. In the perspective of integrating BIM data into GIS systems, this study performs literature reviews on georeferencing techniques and identifies limitations in carrying out the georeferencing process using attribute information associated with absolute coordinates probided by Industry Foundation Classes(IFC) as a BIM standard. To address these limitations, an automated georeferencing process is proposed as a pilot study to position a IFC model with the Local Coordinate System(LCS) in GIS environments with the Reference Coordinate System(RCS). An evaluation of the proposed approach over a BIM model demonstrates that the proposed method is expected to be a great help for automatically georeferencing complex BIM models in a GIS environment, and thus provides benefits for efficient and reliable BIM and GIS integration in practice.

The Intelligent Information Service Model of Urban Spatial Information for u-UIS - Focused on Urban Ground and Underground Facilities (u-UIS 도시공간정보 연계통합 모델 - 지상.지하시설물을 중심으로 -)

  • Kim, Eun-Hyung;Choi, Hyun-Sang;Kim, Tae-Hoon
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.1
    • /
    • pp.189-194
    • /
    • 2009
  • With the rapid development of information and telecommunication technologies, the adoption of ubiquitous technologies is increasing for the realization of new effective u-City services. u-City is defined as a next-generation informatization city that can innovate a city's various functions, such as improving the welfare of the citizenry, ensuring safety based on systematic urban management, improving the quality of lives, and increasing convenience in city life, by merging cuttingedge information and telecommunication infrastructures and ubiquitous information services with urban space. There is therefore a need to recognize that a successful u-City implementation strategy involves developing the previous UIS into a ubiquitous technology-based UIS and integrating UIS's various urban informations with effective u-City services. In this paper, for UIS-based u-City implementation, the intelligent integration model of urban spatial information based on interoperability is proposed.

  • PDF

A Study on the Distribution Map Designs for the Construction of Cultural Properties GIS - Focusing on Regional Cultural relics information - (문화재GIS 구축을 위한 문화유적분포지도 제작 연구 - 지자체 문화유적정보를 중심으로 -)

  • Jang, Mun-Hyun
    • Spatial Information Research
    • /
    • v.16 no.3
    • /
    • pp.303-315
    • /
    • 2008
  • This study is aimed at the surveys of cultural relics and GIS based searching system which have been partially performed in each region. The goal of this research is to construct the cultural relics management system of region and to present the plan for a nationwide data integration. Consequently, based on the standard which presents from Cultural Properties Administration constructed a spatial and attribute data. And presented the model which matches national standard for a cultural property GIS integration. Also minimized a damage possibility about the cultural ruins, confirmed an application possibility about cultural ruins information of the local government.

  • PDF