• Title/Summary/Keyword: spatial grid model

Search Result 329, Processing Time 0.02 seconds

Study on Wind Power Prediction model based on Spatial Modeling (공간모델링 기반의 풍력발전출력 예측 모델에 관한 연구)

  • Jung, Solyoung;Hur, Jin;Choy, Young-do
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.163-168
    • /
    • 2015
  • In order to integrate high wind generation resources into power grid, it is an essential to predict power outputs of wind generating resources. As wind farm outputs depend on natural wind resources that vary over space and time, spatial modeling based on geographic information such as latitude and longitude is needed to estimate power outputs of wind generation resources. In this paper, we introduce the basic concept of spatial modeling and present the spatial prediction model based on Kriging techniques. The empirical data, wind farm power output in Texas, is considered to verify the proposed prediction model.

Assessment of Air Quality Impact Associated with Improving Atmospheric Emission Inventories of Mobile and Biogenic Sources

  • Shin, Tae-joo
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.1
    • /
    • pp.11-23
    • /
    • 2000
  • Photochemical air quality models are essential tools in predicting future air quality and assessing air pollution control strategies. To evaluate air quality using a photochemical air quality model, emission inventories are important inputs to these models. Since most emission inventories are provided at a county-level, these emission inventories need to be geographically allocated to the computational grid cells of the model prior to running the model. The conventional method for the spatial allocation of these emissions uses "spatial surrogate indicators", such as population for mobile source emissions and county area for biogenic source emissions. In order to examine the applicability of such approximations, more detailed spatial surrogate indicators were developed using Geographic Information System(GIS) tools to improve the spatial allocation of mobile and boigenic source emissions, The proposed spatial surrogate indicators appear to be more appropriate than conventional spatial surrogate indicators in allocating mobile and biogenic source emissions. However, they did not provide a substantial improvement in predicting ground-level ozone(O3) concentrations. As for the carbon monoxide(CO) concentration predictions, certain differences between the conventional and new spatial allocation methods were found, yet a detailed model performance evaluation was prevented due to a lack of sufficient observed data. The use of the developed spatial surrogate indicators led to higher O3 and CO concentration estimates in the biogenic source emission allocation than in the mobile source emission allocation.llocation.

  • PDF

A Study on the Numerical Analysis of the Viscous Flow for a Full Ship Model (비대선 모형에 대한 점성유동의 수치해석연구)

  • 박명규;강국진
    • Journal of the Korean Institute of Navigation
    • /
    • v.19 no.2
    • /
    • pp.13-22
    • /
    • 1995
  • This paper presents the numerical analysis results of the viscous flow for a full ship model. The mass and momentum conservation equations are used for governing equations, and the flow field is discretized by the Finite-Volume Method for the numerical calculation. An algebraic grid and elliptic grid generation techniques are adopted for generation of the body-fitted coordinates system, which is suitable to ship's hull forms. Time-marching procedure is used to solve the three-dimensional unsteady problem, where the convection terms are approximated by the QUICK scheme and the 2nd-order central differencing scheme is used for other spatial derivatives. A Sub-Grid Scale turbulence model is used to approximate the turbulence, and the wall function is used at the body surface. Pressure and velocity fields are calculated by the simultaneous iteration method. Numerical calculations were accomplished for the Crude Oil Tanker(DWT 95,000tons, Cb=0.805) model. Calculation results are compared to the experimental results and show good agreements.

  • PDF

A Study on the y+ Effects on Turbulence Model of Unstructured Grid for CFD Analysis of Wind Turbine (풍력터빈 전산유체역학해석에서 비균일 그리드 무차원 연직거리의 난류모델에 대한 영향특성)

  • Lee, Kyoung-Soo;Ziaul, Huque;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.1
    • /
    • pp.75-84
    • /
    • 2015
  • This paper presents the dimensionless wall distance, y+ effect on SST turbulent model for wind turbine blade. The National Renewable Energy Laboratory (NREL) Phase VI wind turbine was used for the study, which the wind tunnel and structural test data has publicly available. The near wall treatment and turbulent characteristics have important role for proper CFD simulation. Most of the CFD development in this area is focused on advanced turbulence model closures including second moment closure models, and so called Low-Reynolds (low-Re) number and two-layer turbulence models. However, in many cases CFD aerodynamic predictions based on these standard models still show a large degree of uncertainty, which can be attributed to the use of the $\epsilon$-equation as the turbulence scale equation and the associated limitations of the near wall treatment. The present paper demonstrates the y+ definition effect on SST (Shear Stress Transport) turbulent model with advanced automatic near wall treatment model and Gamma theta transitional model for transition from lamina to turbulent flow using commercial ANSYS-CFX. In all cases the SST model shows to be superior, as it gives more accurate predictions and is less sensitive to grid variations.

Efficient Processing of Huge Airborne Laser Scanned Data Utilizing Parallel Computing and Virtual Grid (병렬처리와 가상격자를 이용한 대용량 항공 레이저 스캔 자료의 효율적인 처리)

  • Han, Soo-Hee;Heo, Joon;Lkhagva, Enkhbaatar
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.4
    • /
    • pp.21-26
    • /
    • 2008
  • A method for processing huge airborne laser scanned data using parallel computing and virtual grid is proposed and the method is tested by generating raster DSM(Digital Surface Model) with IDW(Inverse Distance Weighting). Parallelism is involved for fast interpolation of huge point data and virtual grid is adopted for enhancing searching efficiency of irregularly distributed point data. Processing time was checked for the method using cluster constituted of one master node and six slave nodes, resulting in efficiency near to 1 and load scalability property. Also large data which cannot be processed with a sole system was processed with cluster system.

  • PDF

Buckling Analysis of Spherical Shells that Rigidity-Distribution has Periodicity (강성분포가 주기성을 갖는 구형쉘의 좌굴해석)

  • Park, Sang-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.4 s.6
    • /
    • pp.45-52
    • /
    • 2002
  • Research about spherical shells been applying most usually is achieved by many investigators already and generalized equation has been derived. But, existent research is limited in case that spherical shell's roof rigidity is isotropy or orthotropy, and research that consider periodicity of rigidity-distribution that can happen by doing spherical shell's roof system by lattice system is not gone entirely. The purpose of this paper is applying Galerkin method to spherical shell that model periodicity of roof rigidity distribution that appear by roof lattice form of large space structure and develop structural analysis program that formularize. Rigidity-model of this research selects that of spherical shell which has 2-way grid. In this paper, buckling-strength and deformation distribution of isotopic spherical shell and 2-way grid spherical shell obtained by developed program could confirm the reliability by comparison with result of existent research.

  • PDF

Grid Based Nonpoint Source Pollution Load Modelling

  • Niaraki, Abolghasem Sadeghi;Park, Jae-Min;Kim, Kye-Hyun;Lee, Chul-Yong
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.246-251
    • /
    • 2007
  • The purpose of this study is to develop a grid based model for calculating the critical nonpoint source (NPS) pollution load (BOD, TN, TP) in Nak-dong area in South Korea. In the last two decades, NPS pollution has become a topic for research that resulted in the development of numerous modeling techniques. Watershed researchers need to be able to emphasis on the characterization of water quality, including NPS pollution loads estimates. Geographic Information System (GIS) has been designed for the assessment of NPS pollution in a watershed. It uses different data such as DEM, precipitation, stream network, discharge, and land use data sets and utilizes a grid representation of a watershed for the approximation of average annual pollution loads and concentrations. The difficulty in traditional NPS modeling is the problem of identifying sources and quantifying the loads. This research is intended to investigate the correlation of NPS pollution concentrations with land uses in a watershed by calculating Expected Mean Concentrations (EMC). This work was accomplished using a grid based modelling technique that encompasses three stages. The first step includes estimating runoff grid by means of the precipitation grid and runoff coefficient. The second step is deriving the gird based model for calculating NPS pollution loads. The last step is validating the gird based model with traditional pollution loads calculation by applying statistical t-test method. The results on real data, illustrate the merits of the grid based modelling approach. Therefore, this model investigates a method of estimating and simulating point loads along with the spatially distributed NPS pollution loads. The pollutant concentration from local runoff is supposed to be directly related to land use in the region and is not considered to vary from event to event or within areas of similar land uses. By consideration of this point, it is anticipated that a single mean estimated pollutant concentration is assigned to all land uses rather than taking into account unique concentrations for different soil types, crops, and so on.

  • PDF

Resampling for Roughness Coefficient of Surface Runoff Model Using Mosaic Scheme (모자이크기법을 이용한 지표유출모형의 조도계수 리샘플링)

  • Park, Sang-Sik;Kang, Boo-Sik
    • Journal of Environmental Science International
    • /
    • v.20 no.1
    • /
    • pp.93-106
    • /
    • 2011
  • Physically-based resampling scheme for roughness coefficient of surface runoff considering the spatial landuse distribution was suggested for the purpose of effective operational application of recent grid-based distributed rainfall runoff model. Generally grid scale(mother scale) of hydrologic modeling can be greater than the scale (child scale) of original GIS thematic digital map when the objective basin is wide or topographically simple, so the modeler uses large grid scale. The resampled roughness coefficient was estimated and compared using 3 different schemes of Predominant, Composite and Mosaic approaches and total runoff volume and peak streamflow were computed through distributed rainfall-runoff model. For quantitative assessment of biases between computational simulation and observation, runoff responses for the roughness estimated using the 3 different schemes were evaluated using MAPE(Mean Areal Percentage Error), RMSE(Root-Mean Squared Error), and COE(Coefficient of Efficiency). As a result, in the case of 500m scale Mosaic resampling for the natural and urban basin, the distribution of surface runoff roughness coefficient shows biggest difference from that of original scale but surface runoff simulation shows smallest, especially in peakflow rather than total runoff volume.

A Study on Building Identification from the Three-dimensional Point Cloud by using Monte Carlo Integration Method (몬테카를로 적분을 통한 3차원 점군의 건물 식별기법 연구)

  • YI, Chaeyeon;AN, Seung-Man
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.16-41
    • /
    • 2020
  • Geospatial input setting to represent the reality of spatial distribution or quantitative property within model has become a major interest in earth system simulation. Many studies showed the variation of grid resolution could lead to drastic changes of spatial model results because of insufficient surface property estimations. Hence, in this paper, the authors proposed Monte Carlo Integration (MCI) to apply spatial probability (SP) in a spatial-sampling framework using a three-dimensional point cloud (3DPC) to keep the optimized spatial distribution and area/volume property of buildings in urban area. Three different decision rule based building identification results were compared : SP threshold, cell size, and 3DPC density. Results shows the identified building area property tend to increase according to the spatial sampling grid area enlargement. Hence, areal building property manipulation in the sampling frameworks by using decision rules is strongly recommended to increase reliability of geospatial modeling and analysis results. Proposed method will support the modeling needs to keep quantitative building properties in both finer and coarser grids.

Kalman-Filter Estimation and Prediction for a Spatial Time Series Model (공간시계열 모형의 칼만필터 추정과 예측)

  • Lee, Sung-Duck;Han, Eun-Hee;Kim, Duck-Ki
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.1
    • /
    • pp.79-87
    • /
    • 2011
  • A spatial time series model was used for analyzing the method of spatial time series (not the ARIMA model that is popular for analyzing spatial time series) by using chicken pox data which is a highly contagious disease and grid data due to ARIMA not reflecting the spatial processes. Time series model contains a weighting matrix, because that spatial time series model influences the time variation as well as the spatial location. The weighting matrix reflects that the more geographically contiguous region has the higher spatial dependence. It is hypothesized that the weighting matrix gives neighboring areas the same influence in the study of the spatial time series model. Therefore, we try to present the conclusion with a weighting matrix in a way that gives the same weight to existing neighboring areas in the study of the suitability of the STARMA model, spatial time series model and STBL model, in the comparative study of the predictive power for statistical inference, and the results. Furthermore, through the Kalman-Filter method we try to show the superiority of the Kalman-Filter method through a parameter assumption and the processes of prediction.