• Title/Summary/Keyword: spatial genetic structure

Search Result 49, Processing Time 0.025 seconds

Genetic Diversity and Spatial Genetic Structure of Dwarf Stone Pine in Daecheongbong Area, Mt. Seorak (설악산 대청봉 눈잣나무(Pinus pumila (Pall.) Regel) 집단의 유전다양성과 공간적 유전구조)

  • Song, Jeong-Ho;Lim, Hyo-In;Hong, Kyung-Nak;Jang, Kyung-Hwan;Hong, Yong-Pyo
    • Korean Journal of Plant Resources
    • /
    • v.25 no.4
    • /
    • pp.407-415
    • /
    • 2012
  • Pinus pumila, which occurs in the northeast Asia, is found limitedly in Daecheongbong area of Mt. Seorak in the South Korea. This population was chosen to study spatial pattern, genetic diversity and spatial genetic structure. There were 48 polymorphic and 30 monomorphic I-SSR markers. A total of 65 individuals which distributed in the study site (40 m ${\times}$ 70 m) showed weakly aggregate distribution (Aggregate Index = 0.871). A total of 40 genets were observed from 65 individuals through I-SSR genotype comparison. Proportion of distinguishable genotype (G/N), genotype diversity (D) and genotype evenness (E) were 61.5%, 0.977 and 0.909, respectively. In spite of the small number and the limited distribution, Shannon's diversity index (I = 0.567) was relatively high as compared with those of other plant species. Spatial autocorrelation using Tanimoto's distance showed that the genetic patch was established within 12 m. Based on Mantel tests, there was relatively low correlation between genetic distance and geographic distance. Therefore, it seems the P. pumila population was formed by many parent trees in early stage. For ex situ genetic conservation of P. pumila, the sampling strategy is efficient at least above 12 m between individual trees.

Genetic Diversity and Spatial Genetic Structure of Berchemia racemosa var. magna in Anmyeon Island (안면도 먹넌출 집단의 유전다양성과 공간적 유전구조)

  • Song, Jeong-Ho;Lim, Hyo-In;Jang, Kyeong-Hwan;Hong, Kyung-Nak;Han, Jingyu
    • Horticultural Science & Technology
    • /
    • v.32 no.1
    • /
    • pp.84-90
    • /
    • 2014
  • Berchemia racemosa var. magna is only found in Anmyeon Island of South Korea. Genetic diversity and the spatial genetic structure of B. racemosa var. magna in Anmyeon Island were studied by I-SSR marker system. Fifty I-SSR amplicons were produced from 8 selected primers. We used 13 polymorphic markers to analyze the genetic structure. Distribution of 39 individuals in the study plot($90m{\times}70m$) showed aggregate pattern (aggregation index = 0.706). Total 21 genets were observed from 39 individuals through I-SSR genotyping. Proportion of distinguishable genotype (G/N), genotype diversity (D) and genotype evenness (E) were 53.8%, 0.966 and 0.946, respectively. In spite of the small number and the narrow distribution, Shannon's diversity index (I = 0.598) was relatively high as compared with those of the other plant species. For ex situ genetic conservation of B. racemosa var. magna, the sampling strategy based on spatial autocorrelation using Tanimoto distance is efficient at choosing the conserved individuals with a 6 meter interval between individual trees.

Spatial Genetic Structure at a Korean Pine (Pinus koraiensis) Stand on Mt. Jumbong in Korea Based on Isozyme Studies (점봉산(點鳳山) 잣나무임분(林分)의 개체목(個體木) 공간분포(空間分布)에 따른 유전구조(遺傳構造))

  • Hong, Kyung-Nak;Kwon, Young-Jin;Chung, Jae-Min;Shin, Chang-Ho;Hong, Yong-Pyo;Kang, Bum-Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.1
    • /
    • pp.43-54
    • /
    • 2001
  • Genetic differentiation of populations is resulted from the environmental and the genetic effects, and the interactions between them. Whereas, the major factors influencing to the genetic differentiation within populations are the gene flow induced by seed or pollen dispersial, the microsite heterogeneity, and the density-dependent distribution of individuals. For the purpose of studying spatial genetic structure and the distribution pattern of Korean pines(Pinus koraiensis), we set up one $100{\times}100m$ plot at a Korean pine stand in Quercus mongolica community on Mt. Jumbong in Korea. To estimate the coefficient of spatial autocorrelation as Moran's index and an analogue, simple block distance, isozyme markers were analyzed in 325 Korean pines. For 11 polymorphic loci observed in 9 enzyme systems, the average percentage of polymorphic loci, the observed and expected heterozygocity were 72.2% 0.200, and 0.251, respectively. It was revealed the excess of homozygotes was observed in the plot, which suggests that here may be more number of consanguineous trees than expected. On the basis of isozyme genotypes observed in this study, 325 trees were classified into 147 groups in which the maximum number of trees for one group was 34. From the distance class of 24-32m, the genetic heterogeneity began to increase. The variation of simple block distance against the growth performance by tree height and diameter also showed the same trend at 24~32m class. According to high fixation index(F=0.204), the spatial genetic structure within a stand, the analysis of the growth performance, and the distribution patterns of identical genotypes, we inferred that the genetic structure of a Korean pine stand in Mt. Jumbong has been maintained rather density-dependent mechanism than the gene flow, such as the pollen dispersial or the heavy input of seeds following the forest gaps. The genetic patchy size was determined between 24~32m, which suggests that the selection of individuals for the ex situ conservation of Korean pine in Mt. Jumbong may be desirable to be made with the spatial distance over 37 meters between trees.

  • PDF

Genetic Variation and Population Structure of Alder (Alnus hirsuta : Betulaceae) in Korea

  • Park, Joo-Soo;Huh, Man-Kyu
    • Journal of Life Science
    • /
    • v.10 no.1
    • /
    • pp.14-19
    • /
    • 2000
  • Variation at 25 allozyme loci in Korean wateralder (Alnus hirsuta Rupr.) from nine distinct populations was measured to estimate the amount and pattern of genetic diversity and population structure. The mean genetic diversity within population was 0.166. Korean alder populations have slightly high levels of genetic diversity compared to those present in associated temperature-zone species and two Canadian alder species. Among population s genetic differentiation accounted for an significant 9% of the total variation. High gene flow(Nm=2.63) was observed. Analysis of fixation indices, calculated for all polymorphic loci in each population, showed a substantial deficiency of heterozygotes relative to Hardy-Weinberg expectations. The mean GST value A. hirsuta in Korea (GST = 0.087) is similar to those of A. rogosa in Canada (GST = 0.052). These low values of GST in two countries. reflecting little spatial genetic differentiation, may indicate extensive gene flow (via pollen and/or seeds) and/or recent colonization. These factors reduce the effect of geographic isolation of breeding and the chance for genetic divergence. A pattern of increasing is observed with increasing rainfall per year. Regression analysis indicates that 54% (F = 4.67) of the variability observed can be explained by this relationship.

  • PDF

Small-scale spatial genetic structure of Asarum sieboldii metapopulation in a valley

  • Jeong, Hyeon Jin;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • v.45 no.3
    • /
    • pp.97-104
    • /
    • 2021
  • Background: Asarum sieboldii Miq., a species of forest understory vegetation, is an herbaceous perennial belonging to the family Aristolochiaceae. The metapopulation of A. sieboldii is distributed sparsely and has a short seed dispersal distance by ants as their seed distributor. It is known that many flowers of A. sieboldii depend on self-fertilization. Because these characteristics can affect negatively in genetic structure, investigating habitat structure and assessment of genetic structure is needed. A total of 27 individuals in a valley were sampled for measuring genetic diversity, genetic distance, and genetic differentiation by RAPDPCR. Results: The habitat areas of A. sieboldii metapopulation were relatively small (3.78~33.60 m2) and population density was very low (five to seven individuals in 20×20 m quadrat). The habitat of A. sieboldii was a very shady (relative light intensity = 0.9%) and mature forest with a high evenness value (J = 0.81~0.99) and a low dominance value (D = 0.19~0.28). The total genetic diversity of A. sieboldii was quite high (h = 0.338, I = 0.506). A total of 33 band loci were observed in five selected primers, and 31 band loci (94%) were polymorphic. However, genetic differentiation along the valley was highly progressed (Gst = 0.548, Nm = 0.412). The average genetic distance between subpopulations was 0.387. The results of AMOVA showed 52.77% of variance occurs among populations, which is evidence of population structuring. Conclusions: It is expected that a small-scale founder effect had occurred, an individual spread far from the original subpopulation formed a new subpopulation. However, geographical distance between individuals would have been far and genetic flow occurred only within each subpopulation because of the low density of population. This made significant genetic distance between the original and new population by distance. Although genetic diversity of A. sieboldii metapopulation is not as low as concerned, the subpopulation of A. sieboldii can disappear by stochastic events due to small subpopulation size and low density of population. To prevent genetic isolation and to enhance the stable population size, conservative efforts such as increasing the size of each subpopulation or the connection between subpopulations are needed.

Development of Control Algorithm for Effective Simultaneous Control of Multiple MR Dampers (다중 MR 감쇠기의 효과적인 동시제어를 위한 제어알고리즘 개발)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.3
    • /
    • pp.91-98
    • /
    • 2013
  • A multi-input single-output (MISO) semi-active control systems were studied by many researchers. For more improved vibration control performance, a structure requires more than one control device. In this paper, multi-input multi-output (MIMO) semi-active fuzzy controller has been proposed for vibration control of seismically excited small-scale buildings. The MIMO fuzzy controller was optimized by multi-objective genetic algorithm. For numerical simulation, five-story example building structure is used and two MR dampers are employed. For comparison purpose, a clipped-optimal control strategy based on acceleration feedback is employed for controlling MR dampers to reduce structural responses due to seismic loads. Numerical simulation results show that the MIMO fuzzy control algorithm can provide superior control performance to the clipped-optimal control algorithm.

A Facility Location Model Considering the Urban Spatial Structure by Genetic Algorithm (유전자 알고리즘을 이용한 도시공간형태별 입지선정 모델)

  • Na, Ho-Young;Lee, Sang-Heon
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.3
    • /
    • pp.35-44
    • /
    • 2008
  • Facility location problem is an important subject in many areas of modern business environment. In this paper, we deal with uncapacitated and multi-period facility location problem where the object is a maximization of total profit within predetermined cost. We assume that all demand have to be met. Particularly, we represent various types of customer based on four well-known urban spatial structures to represent a spread of customers. Those are concentric zone model, sector model, multiple nuclei model and star model respectively. We apply to the genetic algorithm to simulate a large scaled problem and develop simulator. We analyze both optimal numbers and locations of facilities for each urban structure. Furthermore, we examine the appropriate time to further expansion of the facilities in the planning horizon. The experimental results show that the developed algorithm can be applied effectively to the facility location problem in the various types of urban area.

  • PDF

Spatial Autocorrelation within a Korean Population of Alnus hirsuta (한국내 물오리나무(Ainus hirsuta) 집단의 공간적 상관관계)

  • Park, Joo-Soo
    • Journal of Life Science
    • /
    • v.14 no.2
    • /
    • pp.345-350
    • /
    • 2004
  • The present study was investigated microgeographic variations to spatial autocorrelation in the Korean alder, Alnus hirsuta. Separate counts of each type of join (combination of genotypes at a single locus) for each allele, and for each distance class of separation, were tested for significant deviation from random expectations by calculating the Standard Normal Deviation (SND). Moran's I was significantly different from the expected value in 24 of 120 cases (20.0%). 17 of these values (14.2%) were significantly negative, indicating genetic dissimilarity among pairs of individuals in the ten distance classes. Many Korean populations of alder are small and are distributed by men for firewood. This occasional cutting of seed-bearing stems may bring a high level of gene flow. In addition, stump sprouting ability also may contribute to the fact that the Chengkwang population at Gijang is unusual in lacking spatial genetic structure.

Genetic Structure and Composition of Genetic Diversity in the Kouchi Sub-breed of the Japanese Brown Cattle Population

  • Honda, Takeshi;Fujii, Toshihide;Mukai, Fumio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1631-1635
    • /
    • 2007
  • Japanese Brown cattle, one of the four domestic beef breeds in Japan, are suffering from numerical reduction due to economic pressure from profitable breeds. In this study, all the reproductive cows in the Kouchi sub-breed of the Japanese Brown cattle that were alive in July 2005 were investigated by pedigree analysis to clarify genetic structure and composition of genetic variability. In addition, genetically important individuals for the maintenance of genetic variability of the sub-breed were also identified through the core set method. The number of cows analyzed was 1,349. Their pedigrees were traced back to ancestors born around 1940, and pedigree records of 13,157 animals were used for the analysis. Principal component analysis was performed on the relationship matrix of the cows, and their factor loadings were plotted on a three-dimensional diagram. According to their spatial positions in the diagram, all the cows were subdivided into five genetically distinctive subpopulations of 131 to 437 animals. Genetic diversity of the whole sub-breed, which is estimated to be 0.901, was decomposed into 0.856 and 0.045 of within-subpopulation and between-subpopulation components. Recalculation of genetic diversity after removal of one or several subpopulations from the five subpopulations suggested that three of them were genetically important for the maintenance of genetic variability of the sub-breed. Applying the core set method to all the cows, maximum attainable genetic diversity was estimated to be 0.949, and optimal genetic contributions assigned to each cow supported the previous results indicating relative importance of the three subpopulations as useful genetic materials.

Spatial Autocorrelation Analysis of Carex humilis on Mt. Giri by RAPD (RAPD에 의한 지리산 내 산거울 집단의 공간적 상관관계 분석)

  • Lee, Bok-Kyu;Lee, Byeong-Ryong;Huh, Man-Kyu
    • Journal of Life Science
    • /
    • v.20 no.9
    • /
    • pp.1287-1293
    • /
    • 2010
  • The spatial distribution of alleles and geographical distances of a Carex humilis population on Mt. Giri in Korea were studied. A total of 102 DNA fragments (bands) were found among 107 plants. Among these 102 bands, 48 (47.1%) bands were polymorphic. In a simple variability of subpopulations by the percentage of polymorphic bands, distances I and V exhibited the lowest variation (16.7%). Distance VIII showed the highest variation (22.6%). The total genetic diversity (H) was 0.076 across species. Class VIII had the highest H (0.093), while class I had the lowest (0.063). Genetic similarity of individuals was found among subpopulations at up to a scale of 60 m distance, and this was partly due to a combination of alleles. Within the Mt. Giri population, a strong spatial structure was observed for RAPD markers, indicating a very low amount of migration among subpopulations and that the distribution of individual genotypes of a given population was clumped. The present study demonstrated that analysis of RAPD markers could be successfully used to study the spatial and genetic structures of C. humilis.