• 제목/요약/키워드: spatial fourier

Search Result 172, Processing Time 0.027 seconds

Comparison of Image Matching Method for Automatic Matching of High Resolution SAR Imagery (SAR 영상 자동정합을 위한 영상정합기법의 비교연구)

  • Baek, Sang Ho;Hong, Seung Hwan;Yoo, Su Hong;Sohn, Hong Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1639-1644
    • /
    • 2014
  • SAR satellite can acquire clear imagery regardless of weather and the images are widely used for land management, natural hazard monitoring and many other applications. Automatic image matching technique is necessary for management of a huge amount of SAR data. Nevertheless, it is difficult to assure the accuracy of image matching due to the difference of image-capturing attitude and time. In this paper, we compared performances of MI method, FMT method and SIFT method by applying arbitrary displacement and rotation to TerraSAR-X images and changing resolution of the images. As a result, when the features having specific intensity were distributed well in SAR imagery, MI method could assure 0~2 pixels accuracy even if the images were captured in different geometry. But the accuracy of FMT method was significantly poor for the images having different spatial resolutions and the error was represented by tens or hundreds pixels. Moreover, the ratio of corresponding matching points for SIFT method was only 0~17% and it was difficult for SIFT method to apply to SAR images captured in different geometry.

Effects of Form Errors of a Micromirror Surface on the Optical System of the TMATM(Thin-film Micromirror ArrayTM) Projector

  • Jo, Yong-Shik;Kim, Byoung-Chang;Kim, Seung-Woo;Hwang, Kyu-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.98-105
    • /
    • 2000
  • The projectors using liquid crystal display(LCD) have faults such as low optical efficiency, low brightness and even heat generation. To solve these problems reflective-type spatial light modulators based on MEMS (Microelectromechanical Systems) technology have emerged. Digital Micromirror DeviceTM(DMDTM), which was already developed by Texas Instruments Inc., and Thin-film Micromirror ArrayTM(TMATM), which has been recently developed by Daewoo Electronics Co., are the representative examples. The display using TMATM has particularly much higher optical efficiency than other projectors. But the micromirrors manufactured by semiconductor processes have inevitable distortion because of the limitations of the manufacturing processes, so that the distortions of their surfaces have great influence on the optical efficiency of the projector. This study investigated the effects of mirror flatness on the optical performance, including the optical efficiency, of the TMATM projector. That is to say, as a part of the efforts to enhance the performance of the TMATM projector, how much influence the form errors of a micromirror surface exert on the optical efficiency and the modulation of gray scale of the projector were analyzed through a pertinent modeling and simulations.

  • PDF

Reduced Feedback Beamforming with a Large Antenna Array in Wireless Backhaul Downlink Systems (거대 배열 안테나 무선 백홀 하향 링크 시스템에서 피드백 량을 줄이기 위한 빔 형성 방법)

  • Park, Jaebum;Kwon, Girim;Park, Hyuncheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1903-1913
    • /
    • 2016
  • In this paper, we propose 2-stage beamformer with linear receiver in wireless backhaul downlink system where macro base station has large antenna array with sub-array structure. Also, to compare the system capacity, we apply 3-stage beamformer with zero-forcing precoder and calculate the achievable sum rate of received small cell base stations. Considering scattering and path-loss property of wireless backhaul channel, we combine precoding technique for spatial multiplexing and beamforming technique to overcome path-loss. Therefore, we design DFT-based fixed beam patterns for the first stage. The simulation results show that considering spatial multiplexing, proposed 2-stage beamformer with linear receiver can increase the achievable sum rate as well as reduce the feedback information.

Matching Points Extraction Between Optical and TIR Images by Using SURF and Local Phase Correlation (SURF와 지역적 위상 상관도를 활용한 광학 및 열적외선 영상 간 정합쌍 추출)

  • Han, You Kyung;Choi, Jae Wan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.1
    • /
    • pp.81-88
    • /
    • 2015
  • Various satellite sensors having ranges of the visible, infrared, and thermal wavelengths have been launched due to the improvement of hardware technologies of satellite sensors development. According to the development of satellite sensors with various wavelength ranges, the fusion and integration of multisensor images are proceeded. Image matching process is an essential step for the application of multisensor images. Some algorithms, such as SIFT and SURF, have been proposed to co-register satellite images. However, when the existing algorithms are applied to extract matching points between optical and thermal images, high accuracy of co-registration might not be guaranteed because these images have difference spectral and spatial characteristics. In this paper, location of control points in a reference image is extracted by SURF, and then, location of their corresponding pairs is estimated from the correlation of the local similarity. In the case of local similarity, phase correlation method, which is based on fourier transformation, is applied. In the experiments by simulated, Landsat-8, and ASTER datasets, the proposed algorithm could extract reliable matching points compared to the existing SURF-based method.

DYNAMICAL CHARACTERISTICS OF SUNSPOT CHROMOSPHERES II. ANALYSIS OF CA II H, K AND ${\lambda}8498$ LINES OF A SUNSPOT (SPO 5007) FOR OSCILLATORY MOTIONS

  • Yoon, Tae-Sam;Yun, Hong-Sik;Kim, Jeong-Hoon
    • Journal of The Korean Astronomical Society
    • /
    • v.28 no.2
    • /
    • pp.245-253
    • /
    • 1995
  • We have analyzed the time series of Ca II H,K and ${\lambda}8498$ line profiles taken for a sunspot (SPO 5007) with the Echelle spectrograph attached to Vacuum Tower Telescope at Sacramento Peak Solar Observatory. Each set of spectra was taken simultaneously for 20 minutes at a time interval of 30 seconds. A total of 40 photographic films for each line was scanned by a PDS at Korea Astronomy Observatory. The central peak intensity of Ca II H ($I_{max}$), the intensity measured at ${\Delta}{\lambda}=-0.1{\AA}$ from the line center of ${\lambda}8498(I_{{\lambda}8489})$, the radial velocity ($V_r$) and the Doppler width (${\Delta}{\lambda}_D$) estimated from Ca II H have been measured to study the dynamical behaviors of the sunspot chromosphere. Fourier analysis has been carried out for these measured quantities. Our main results are as follows: (1) We have confirmed the 3-minute oscillation being dominant throughout the umbra. The period of oscillations jumps from 180 sec in the umbra to 500 to 1000 sec in the penumbra. (2) The nonlinear character of the umbral oscillation is noted from the observed sawtooth shaped radial velocity fluctuations with amplitudes reaching up to $5{\sim}6\;km/sec$. (3) The spatial distribution of the maximum powers shows that the power of oscillations is stronger in the umbra than in the penumbra. (4) The spatial distributions of the time averaged < $I_{max}$ > and < $V_r$ > across the spot are found to be nearly axially symmetric, implying that the physical quantities derived from the line profiles of Ca II H and ${\lambda}8498$ are inherently associated with the geometry of the magnetic field distribution of the spot. (5) The central peaks of the CaII H emission core lead the upward motions of the umbral atmosphere by $90^{\circ}$, while no phase delay is found in intensities between $I_{max}$ and $I_{{\lambda}8498}$, suggesting that the umbral oscillation is of standing waves.

  • PDF

High-Resolution Numerical Simulation of Respiration-Induced Dynamic B0 Shift in the Head in High-Field MRI

  • Lee, So-Hee;Barg, Ji-Seong;Yeo, Seok-Jin;Lee, Seung-Kyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.1
    • /
    • pp.38-45
    • /
    • 2019
  • Purpose: To demonstrate the high-resolution numerical simulation of the respiration-induced dynamic $B_0$ shift in the head using generalized susceptibility voxel convolution (gSVC). Materials and Methods: Previous dynamic $B_0$ simulation research has been limited to low-resolution numerical models due to the large computational demands of conventional Fourier-based $B_0$ calculation methods. Here, we show that a recently-proposed gSVC method can simulate dynamic $B_0$ maps from a realistic breathing human body model with high spatiotemporal resolution in a time-efficient manner. For a human body model, we used the Extended Cardiac And Torso (XCAT) phantom originally developed for computed tomography. The spatial resolution (voxel size) was kept isotropic and varied from 1 to 10 mm. We calculated $B_0$ maps in the brain of the model at 10 equally spaced points in a respiration cycle and analyzed the spatial gradients of each of them. The results were compared with experimental measurements in the literature. Results: The simulation predicted a maximum temporal variation of the $B_0$ shift in the brain of about 7 Hz at 7T. The magnitudes of the respiration-induced $B_0$ gradient in the x (right/left), y (anterior/posterior), and z (head/feet) directions determined by volumetric linear fitting, were < 0.01 Hz/cm, 0.18 Hz/cm, and 0.26 Hz/cm, respectively. These compared favorably with previous reports. We found that simulation voxel sizes greater than 5 mm can produce unreliable results. Conclusion: We have presented an efficient simulation framework for respiration-induced $B_0$ variation in the head. The method can be used to predict $B_0$ shifts with high spatiotemporal resolution under different breathing conditions and aid in the design of dynamic $B_0$ compensation strategies.

Suppression of Moiré Fringes Using Hollow Glass Microspheres for LED Screen (중공 미소 유리구를 이용한 LED 스크린 모아레 억제)

  • Songeun Hong;Jeongpil Na;Mose Jung;Gieun Kim;Jongwoon Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.28-35
    • /
    • 2023
  • Moiré patterns emerge due to the interference between the non-emission area of the LED screen and the grid line in an image sensor of a video recording device when taking a video in the presence of the LED screen. To reduce the moiré intensity, we have fabricated an anti-moiré filter using hollow glass microspheres (HGMs) by slot-die coating. The LED screen has a large non-emission area because of a large pitch (distance between LED chips), causing more severe moiré phenomenon, compared with a display panel having a very narrow black matrix (BM). It is shown that HGMs diffuse light in such a way that the periodicity of the screen is broken and thus the moiré intensity weakens. To quantitatively analyze its moiré suppression capability, we have calculated the spatial frequencies of the moiré fringes using fast Fourier transform. It is addressed that the moiré phenomenon is suppressed and thus the amplitude of each discrete spatial frequency term is reduced as the HGM concentration is increased. Using the filter with the HGM concentration of 9 wt%, the moiré fringes appeared depending sensitively on the distance between the LED screen and the camera are almost completely removed and the visibility of a nature image is enhanced at a sacrifice of luminance.

  • PDF

A Study on Sound Radiation from Isofropic Plates Stiffened by Symmetrical Reinforced Beams (대칭형 보에 의해 보강된 등방성 평판의 음향방사에 관한 연구)

  • 김택현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.41-50
    • /
    • 1998
  • The detemination of sound pressure radiated from peoriodic plate structures is fundamental in the estimation of noise levels in aircraft fuselages and ship hull structures. As a robust approach to this problem, here a very general and comprehensive analytical model for predicting the sound radiated by a vibrating plate stiffened by periodically spaced orthogonal symmetric beams subjected to a sinusoidally time varying point load is developed. The plate is assumed to be infinite in extent, and the beams are considered to exert both line force and moment reactions on it. Structural damping is included in both plate and beam materials. A space harmonic series representation of the spatial variables is used in conjunction with the Fourier transform to find the sound pressure in terms of harmonic coefficients. From this theoretical model. the sound pressure levels on axis in a semi-infinite fluid (water) bounded by the plate with the variation in the locations of an external time harmonic point force on the plate can be calculated efficiently using three numerical tools such as the Gauss-Jordan method, the LU decomposition method and the IMSL numerical package.

  • PDF

Expanded Exit-Pupil Holographic Head-Mounted Display With High-Speed Digital Micromirror Device

  • Kim, Mugeon;Lim, Sungjin;Choi, Geunseop;Kim, Youngmin;Kim, Hwi;Hahn, Joonku
    • ETRI Journal
    • /
    • v.40 no.3
    • /
    • pp.366-375
    • /
    • 2018
  • Recently, techniques involving head-mounted displays (HMDs) have attracted much attention from academia and industry owing to the increased demand for virtual reality and augmented reality applications. Because HMDs are positioned near to users' eyes, it is important to solve the accommodation-vergence conflict problem to prevent dizziness. Therefore, holography is considered ideal for implementing HMDs. However, within the Nyquist region, the accommodation effect is limited by the space-bandwidth-product of the signal, which is determined by the sampling number of spatial light modulators. In addition, information about the angular spectrum is duplicated over the Fourier domain, and it is necessary to filter out the redundancy. The size of the exit-pupil of the HMD is limited by the Nyquist sampling theory. We newly propose a holographic HMD with an expanded exit-pupil over the Nyquist region by using the time-multiplexing method, and the accommodation effect is enhanced. We realize time-multiplexing by synchronizing a high-speed digital micromirror device and a liquid-crystal shutter array. We also demonstrate the accommodation effect experimentally.

An Adaptive Fast Image Restoration Filter for Reducing Blocking Artifacts in the Compressed Image (압축 영상의 블록화 제거를 위한 적응적 고속 영상 복원 필터)

  • 백종호;이형호;백준기;윈치선
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06a
    • /
    • pp.223-227
    • /
    • 1996
  • In this paper we propose an adaptive fast image restoration filter, which is suitable for reducing the blocking artifacts in the compressed image in real-time. The proposed restoration filter is based on the observation that quantization operation in a series of coding process is a nonlinear and many-to-one mapping operator. And then we propose an approximated version of constrained optimization technique as a restoration process for removing the nonlinear and space varying degradation operator. We also propose a novel block classification method for adaptively choosing the direction of a highpass filter, which serves as a constraint in the optimization process. The proposed classification method adopts the bias-corrected maximized likelihood, which is used to determine the number of regions in the image for the unsupervised segmentation. The proposed restoration filter can be realized either in the discrete Fourier transform domain or in the spatial domain in the form of a truncated finite impulse response (FIR) filter structure for real-time processing. In order to demonstrate the validity of the proposed restoration filter experimental results will be shown.

  • PDF