• Title/Summary/Keyword: spatial error model

Search Result 436, Processing Time 0.02 seconds

Investigation of Flow Characteristics of Sharply Curved Channels by Using CCHE2D Model (CCHE2D모형을 이용한 급만곡부의 흐름특성 분석)

  • Kim, Yeon-Su;Jang, Chang-Lae;Lee, Gi-Ha;Jung, Kwan-Sue
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.125-133
    • /
    • 2010
  • In general, curved bends raises a risk of overtopping due to floods and also threatens a bank safety due to a local flow concentration. This study aims to test the applicability of CCHE2D model for experimental flumes with two different types of bends and then investigate flow characteristics in the sharply-curved bend of a natural channel. The results demonstrated that the percent error of water level was within 4.9% for experimental flume applications and the simulated spatial distribution of velocity matched the observed results very closely. The calibrated model based on the experimental flumes was also applied to analyze the flow characteristics in natural channel bends of the Daeyu reach, located in a downstream of the Youngdam Dam. The results showed that in upstream, the simulated water level by the CCHED was observed at 1.5 m higher than the 1-D numerical model (HEC-RAS) result since the HEC-RAS could not represent the bend geometry effect on streamflow. However, the calculated results by several empirical formula support that the CCHE2D is suitable for the super elevation simulation as well as flood stage and velocity in a natural channel bend.

Evaluation of SWAT Prediction Error according to Accuracy of Land Cover Map (토지피복도 정확도에 따른 SWAT 예측 오류 평가)

  • Heo, Sunggu;Kim, Kisung;Kim, Namwon;Ahn, Jaehun;Park, Sanghun;Yoo, Dongseon;Choi, JoongDae;Lim, Kyoungjae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.690-700
    • /
    • 2008
  • The Soil and Water Assessment Tool (SWAT) model users tend to use the readily available input dataset, such as the Ministry of Environment (MOE) land cover data ignoring temporal and spatial changes in land cover. The SWAT model was calibrated and validated with this land cover data. The EI values were 0.79 and 0.85 for streamflow calibration and validation, respectively. The EI were 0.79 and 0.86 for sediment calibration and validation, respectively. With newly prepared landcover dataset for the Doam-dam watershed, the SWAT model better predicts hydrologic and sediment behaviors. The number of HRUs with new land cover data increased by 70.2% compared with that with the MOE land cover, indicating better representation of small-sized agricultural field boundaries. The SWAT estimated annual average sediment yield with the MOE land cover data was 61.8 ton/ha/year for the Doam-dam watershed, while 36.2 ton/ha/year (70.7% difference) of annual sediment yield with new land cover data. Especially the most significant difference in estimated sediment yield was 548.0% for the subwatershed #2. Therefore it is recommended that one needs to carefully validate land cover for the study watershed for accurate hydrologic and sediment simulation with the SWAT model.

Detection and Forecast of Climate Change Signal over the Korean Peninsula (한반도 기후변화시그널 탐지 및 예측)

  • Sohn, Keon-Tae;Lee, Eun-Hye;Lee, Jeong-Hyeong
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.4
    • /
    • pp.705-716
    • /
    • 2008
  • The objectives of this study are the detection and forecast of climate change signal in the annual mean of surface temperature data, which are generated by MRI/JMA CGCM over the Korean Peninsula. MRI/JMA CGCM outputs consist of control run data(experiment with no change of $CO_2$ concentration) and scenario run data($CO_2$ 1%/year increase experiment to quadrupling) during 142 years for surface temperature and precipitation. And ECMWF reanalysis data during 43 years are used as observations. All data have the same spatial structure which consists of 42 grid points. Two statistical models, the Bayesian fingerprint method and the regression model with autoregressive error(AUTOREG model), are separately applied to detect the climate change signal. The forecasts up to 2100 are generated by the estimated AUTOREG model only for detected grid points.

A Finite Element Galerkin High Order Filter for the Spherical Limited Area Model

  • Lee, Chung-Hui;Cheong, Hyeong-Bin;Kang, Hyun-Gyu
    • Journal of the Korean earth science society
    • /
    • v.38 no.2
    • /
    • pp.105-114
    • /
    • 2017
  • Two dimensional finite element method with quadrilateral basis functions was applied to the spherical high order filter on the spherical surface limited area domain. The basis function consists of four shape functions which are defined on separate four grid boxes sharing the same gridpoint. With the basis functions, the first order derivative was expressed as an algebraic equation associated with nine point stencil. As the theory depicts, the convergence rate of the error for the spherical Laplacian operator was found to be fourth order, while it was the second order for the spherical Laplacian operator. The accuracy of the new high order filter was shown to be almost the same as those of Fourier finite element high order filter. The two-dimension finite element high order filter was incorporated in the weather research and forecasting (WRF) model as a hyper viscosity. The effect of the high order filter was compared with the built-in viscosity scheme of the WRF model. It was revealed that the high order filter performed better than the built in viscosity scheme did in providing a sharper cutoff of small scale disturbances without affecting the large scale field. Simulation of the tropical cyclone track and intensity with the high order filter showed a forecast performance comparable to the built in viscosity scheme. However, the predicted amount and spatial distribution of the rainfall for the simulation with the high order filter was closer to the observed values than the case of built in viscosity scheme.

Heating Performance Prediction of Low-depth Modular Ground Heat Exchanger based on Artificial Neural Network Model (인공신경망 모델을 활용한 저심도 모듈러 지중열교환기의 난방성능 예측에 관한 연구)

  • Oh, Jinhwan;Cho, Jeong-Heum;Bae, Sangmu;Chae, Hobyung;Nam, Yujin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.3
    • /
    • pp.1-6
    • /
    • 2022
  • Ground source heat pump (GSHP) system is highly efficient and environment-friendly and supplies heating, cooling and hot water to buildings. For an optimal design of the GSHP system, the ground thermal properties should be determined to estimate the heat exchange rate between ground and borehole heat exchangers (BHE) and the system performance during long-term operating periods. However, the process increases the initial cost and construction period, which causes the system to be hindered in distribution. On the other hand, much research has been applied to the artificial neural network (ANN) to solve problems based on data efficiently and stably. This research proposes the predictive performance model utilizing ANN considering local characteristics and weather data for the predictive performance model. The ANN model predicts the entering water temperature (EWT) from the GHEs to the heat pump for the modular GHEs, which were developed to reduce the cost and spatial disadvantages of the vertical-type GHEs. As a result, the temperature error between the data and predicted results was 3.52%. The proposed approach was validated to predict the system performance and EWT of the GSHP system.

Estimation of Near Surface Air Temperature Using MODIS Land Surface Temperature Data and Geostatistics (MODIS 지표면 온도 자료와 지구통계기법을 이용한 지상 기온 추정)

  • Shin, HyuSeok;Chang, Eunmi;Hong, Sungwook
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.55-63
    • /
    • 2014
  • Near surface air temperature data which are one of the essential factors in hydrology, meteorology and climatology, have drawn a substantial amount of attention from various academic domains and societies. Meteorological observations, however, have high spatio-temporal constraints with the limits in the number and distribution over the earth surface. To overcome such limits, many studies have sought to estimate the near surface air temperature from satellite image data at a regional or continental scale with simple regression methods. Alternatively, we applied various Kriging methods such as ordinary Kriging, universal Kriging, Cokriging, Regression Kriging in search of an optimal estimation method based on near surface air temperature data observed from automatic weather stations (AWS) in South Korea throughout 2010 (365 days) and MODIS land surface temperature (LST) data (MOD11A1, 365 images). Due to high spatial heterogeneity, auxiliary data have been also analyzed such as land cover, DEM (digital elevation model) to consider factors that can affect near surface air temperature. Prior to the main estimation, we calculated root mean square error (RMSE) of temperature differences from the 365-days LST and AWS data by season and landcover. The results show that the coefficient of variation (CV) of RMSE by season is 0.86, but the equivalent value of CV by landcover is 0.00746. Seasonal differences between LST and AWS data were greater than that those by landcover. Seasonal RMSE was the lowest in winter (3.72). The results from a linear regression analysis for examining the relationship among AWS, LST, and auxiliary data show that the coefficient of determination was the highest in winter (0.818) but the lowest in summer (0.078), thereby indicating a significant level of seasonal variation. Based on these results, we utilized a variety of Kriging techniques to estimate the surface temperature. The results of cross-validation in each Kriging model show that the measure of model accuracy was 1.71, 1.71, 1.848, and 1.630 for universal Kriging, ordinary Kriging, cokriging, and regression Kriging, respectively. The estimates from regression Kriging thus proved to be the most accurate among the Kriging methods compared.

Flood Simulation using Vflo and Radar Rainfall Adjustment Data by Statistical Objective Analysis (통계적 객관 분석법에 의한 레이더강우 보정 및 Vflo를 이용한 홍수모의)

  • Noh, Hui Seong;Kang, Na Rae;Kim, Byung Sik;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.14 no.2
    • /
    • pp.243-254
    • /
    • 2012
  • Recently, the use of radar rainfall data that can help tracking of the development and movement of rainfall's spatial distribution is drawing much attention in hydrology. The reliability of existing radar rainfall compared to gauge rainfall data on the ground has not yet been confirmed and so we have difficulties to apply the radar rainfall in hydrology. The radar rainfall for the applications in hydrology are adjusted merging method derived from gage. This study uses the Mean-Field Bias (MFB) and Statistical Objective Analysis (SOA) as correction methods to create adjusted grid-based radar rainfall data which can represent the temporal and spatial distribution of rainfall. This study used a storm event occurred in August 2010 for the adjustment of radar rainfall. In addition, the grid-based distributed rainfall-runoff model (Vflo), which enables more detailed examinations of spatial flux changes in the basin rather than the lumped hydrological models, has been applied to Gamcheon river basin which is a tributary of Nakdong River located in south-eastern part of the Korean peninsular and the basin area is $1005km^2$. The simulated runoff was compared with the observed runoff in an attempt to evaluate the usability of radar rainfall data and the reliability of the correction methods. The error range of peak discharge using each correction method was within 20 percent and the efficiency of the model was between 60 and 80 percent. In particular, the SOA method showed better results than MFB method. Therefore, the SOA method could be used for the adjustment of grid-based radar rainfall and the adjusted radar rainfall can be used as an input data of rainfall-runoff models.

Analysis of Manganese Nodule Abundance in KODOS Area (KODOS 지역의 망간단괴 부존률 분포해석)

  • Jung, Moon Young;Kim, In Kee;Sung, Won Mo;Kang, Jung Keuk
    • Economic and Environmental Geology
    • /
    • v.28 no.3
    • /
    • pp.199-211
    • /
    • 1995
  • The deep sea camera system could render it possible to obtain the detailed information of the nodule distribution, but difficult to estimate nodule abundance quantitatively. In order to estimate nodule abundance quantitatively from deep seabed photographs, the nodule abundance equation was derived from the box core data obtained in KODOS area(long.: $154^{\circ}{\sim}151^{\circ}W$, lat.: $9^{\circ}{\sim}12^{\circ}N$) during two survey cruises carried out in 1989 and 1990. The regression equation derived by considering extent of burial of nodule to Handa's equation compensates for the abundance error attributable to partial burial of some nodules by sediments. An average long axis and average extent of burial of nodules in photographed area are determined according to the surface textures of nodules, and nodule coverage is calculated by the image analysis method. Average nodule abundance estimated from seabed photographs by using the equation is approximately 92% of the actual average abundance in KODOS area. The measured sampling points by box core or free fall grab are in general very sparse and hence nodule abundance distribution should be interpolated and extrapolated from measured data to uncharacterized areas. The another goal of this study is to depict continuous distribution of nodule abundance in KODOS area by using PC-version of geostatistical model in which several stages are systematically proceeded. Geostatistics was used to analyse spatial structure and distribution of regionalized variable(nodule abundance) within sets of real data. In order to investigate the spatial structure of nodule abundance in KODOS area, experimental variograms were calculated and fitted to a spherical models in isotropy and anisotropy, respectively. The spherical structure models were used to map out distribution of the nodule abundance for isotropic and anisotropic models by using the kriging method. The result from anisotropic model is much more reliable than one of isotropic model. Distribution map of nodule abundance produced by PC-version of geostatistical model indicates that approximately 40% of KODOS area is considered to be promising area(nodule abundance > $5kg/m^2$) for mining in case of anisotropy.

  • PDF

Automatic generation of reliable DEM using DTED level 2 data from high resolution satellite images (고해상도 위성영상과 기존 수치표고모델을 이용하여 신뢰성이 향상된 수치표고모델의 자동 생성)

  • Lee, Tae-Yoon;Jung, Jae-Hoon;Kim, Tae-Jung
    • Spatial Information Research
    • /
    • v.16 no.2
    • /
    • pp.193-206
    • /
    • 2008
  • If stereo images is used for Digital Elevation Model (DEM) generation, a DEM is generally made by matching left image against right image from stereo images. In stereo matching, tie-points are used as initial match candidate points. The number and distribution of tie-points influence the matching result. DEM made from matching result has errors such as holes, peaks, etc. These errors are usually interpolated by neighbored pixel values. In this paper, we propose the DEM generation method combined with automatic tie-points extraction using existing DEM, image pyramid, and interpolating new DEM using existing DEM for more reliable DEM. For test, we used IKONOS, QuickBird, SPOT5 stereo images and a DTED level 2 data. The test results show that the proposed method automatically makes reliable DEMs. For DEM validation, we compared heights of DEM by proposed method with height of existing DTED level 2 data. In comparison result, RMSE was under than 15 m.

  • PDF

A Study on the Index Estimation of Missing Real Estate Transaction Cases Using Machine Learning (머신러닝을 활용한 결측 부동산 매매 지수의 추정에 대한 연구)

  • Kim, Kyung-Min;Kim, Kyuseok;Nam, Daisik
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.171-181
    • /
    • 2022
  • The real estate price index plays key roles as quantitative data in real estate market analysis. International organizations including OECD publish the real estate price indexes by country, and the Korea Real Estate Board announces metropolitan-level and municipal-level indexes. However, when the index is set on the smaller spatial unit level than metropolitan and municipal-level, problems occur: missing values. As the spatial scope is narrowed down, there are cases where there are few or no transactions depending on the unit period, which lead index calculation difficult or even impossible. This study suggests a supervised learning-based machine learning model to compensate for missing values that may occur due to no transaction in a specific range and period. The models proposed in our research verify the accuracy of predicting the existing values and missing values.