In this paper, a fully discrete numerical scheme for the viscoelastic Oldroyd flow is considered with an introduced auxiliary variable. Our scheme is based on the finite element approximation for the spatial discretization and the backward Euler scheme for the time discretization. The integral term is discretized by the right trapezoidal rule. Firstly, we present the corresponding equivalent form of the considered model, and show the relationship between the origin problem and its equivalent system in finite element discretization. Secondly, unconditional stability and optimal error estimates of fully discrete numerical solutions in various norms are established. Finally, some numerical results are provided to confirm the established theoretical analysis and show the performances of the considered numerical scheme.
Small business owners are relatively likely to be alienated from various benefits caused by the change to a big data/AI-based society. To support them, we would like to detect a hot place based on the floating population to support small business owners' decision-making in the start-up area. Through various studies, it is known that the population size of the region has an important effect on the sales of small business owners. In this study, inland regions were extracted from the Incheon floating population data from January 2019 to June 2022. the Data is consisted of a grid of 50m intervals, central coordinates and the population for each grid are presented, made image structure through imputation to maintain spatial information. Spatial outliers were removed and imputated using LOF and GAM, and temporal outliers were removed and imputated through LOESS. We used ConvLSTM which can take both temporal and spatial characteristics into account as a predictive model, and used AutoEncoder structure, which performs outliers detection based on reconstruction error to define an area with high MAPE as a hot place.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.17
no.4
/
pp.124-137
/
2018
The main purpose of this study is to find the hotspots of crimes that occur frequently in the space and to derive the appropriate CCTV installation location. One of the characteristics of crime is clustered around past occurrence area, and these crimes are strongly correlated. It is also possible to find the cause of the clusters and the variables that affect the crime through the history of the crime. In addition to the traditional OLS model, spatial differential model including spatial autocorrelation and spatial error model were used to select the variables influencing the five major crime rate, the theft rate and the foreign resident rate. The variables affecting the Five major crimes were positive (+) sign for the welfare and the rate of the bar cluster rate, and negative (-) for the street density. The CCTV area occupies 46% of the hotspots based on the overlapping of the areas where the elderly people are crowded, the bar cluster, many multicultural families, and the areas with low density of street lamps. It turned out. Taking into account the current CCTV operation, the total number of new cases to cover the risk point was 89.
The utilization of crowdsourced spatial data has been actively researched; however, issues stemming from the uncertainty of data quality have been raised. In particular, when low-quality data is mixed into drone imagery datasets, it can degrade the quality of spatial information output. In order to address these problems, the study presents a methodology for automatically validating the geometric quality of crowdsourced imagery. Key quality factors such as spatial resolution, resolution variation, matching point reprojection error, and bundle adjustment results are utilized. To classify imagery suitable for spatial information generation, training and validation datasets are constructed, and machine learning is conducted using a radial basis function (RBF)-based support vector machine (SVM) model. The trained SVM model achieved a classification accuracy of 99.1%. To evaluate the effectiveness of the quality validation model, imagery sets before and after applying the model to drone imagery not used in training and validation are compared by generating orthoimages. The results confirm that the application of the quality validation model reduces various distortions that can be included in orthoimages and enhances object identifiability. The proposed quality validation methodology is expected to increase the utility of crowdsourced data in spatial information generation by automatically selecting high-quality data from the multitude of crowdsourced data with varying qualities.
Journal of Korean Society for Geospatial Information Science
/
v.24
no.3
/
pp.3-9
/
2016
UAV(unmanned aerial vehicle) can quickly produce orthoimage with high-spatial resolution and DSM(digital surface model) at low cost. However, vertical and horizontal positioning accuracy of orthoimage and DSM, which are obtained by UAV, are influenced by image processing techniques, quality of aerial photo, the number and position of GCPs(ground control points) and overlap in flight plan. In this study, effects of overlap and the number of GCPs are analyzed in orthoimage and DSM. Positioning accuracy are estimated based on RMSE(root mean square error) by using dataset of nine pairs. In the experiments, Overlaps and the number of GCPs have influence on horizontal and vertical accuracy of orthoimage and DSM.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.37
no.6
/
pp.525-533
/
2019
There are two feature collection methods in digital mapping using the UAV (Unmanned Aerial Vehicle) Photogrammetry: vectorization and stereo plotting. In vectorization, planar information is extracted from orthomosaics and elevation value obtained from a DSM (Digital Surface Model) or a DEM (Digital Elevation Model). However, the exact determination of the positional accuracy of 3D features such as ground facilities and buildings is very ambiguous, because the accuracy of vectorizing results has been mainly analyzed using only check points placed on the ground. Thus, this study aims to review the possibility of 3D spatial information acquisition and digital map production of vectorization by analyzing the corner point coordinates of different layers as well as check points. To this end, images were taken by a Phantom 4 (DJI) with 3.6 cm of GSD (Ground Sample Distance) at altitude of 90 m. The outcomes indicate that the horizontal RMSE (Root Mean Square Error) of vectorization method is 0.045 cm, which was calculated from residuals at check point compared with those of the field survey results. It is therefore possible to produce a digital topographic (plane) map of 1:1,000 scale using ortho images. On the other hand, the three-dimensional accuracy of vectorization was 0.068~0.162 m in horizontal and 0.090~1.840 m in vertical RMSE. It is thus difficult to obtain 3D spatial information and 1:1,000 digital map production by using vectorization due to a large error in elevation.
Kim, Daewon;Hong, Hyunkee;Choi, Wonei;Park, Junsung;Yang, Jiwon;Ryu, Jaeyong;Lee, Hanlim
Korean Journal of Remote Sensing
/
v.33
no.2
/
pp.135-147
/
2017
We, for the first time, estimated daily and monthly surface nitrogen dioxide ($NO_2$) volume mixing ratio (VMR) using three regression models with $NO_2$ tropospheric vertical column density (OMIT-rop $NO_2$ VCD) data obtained from Ozone Monitoring Instrument (OMI) in Seoul in South Korea at OMI overpass time (13:45 local time). First linear regression model (M1) is a linear regression equation between OMI-Trop $NO_2$ VCD and in situ $NO_2$ VMR, whereas second linear regression model (M2) incorporates boundary layer height (BLH), temperature, and pressure obtained from Atmospheric Infrared Sounder (AIRS) and OMI-Trop $NO_2$ VCD. Last models (M3M & M3D) are a multiple linear regression equations which include OMI-Trop $NO_2$ VCD, BLH and various meteorological data. In this study, we determined three types of regression models for the training period between 2009 and 2011, and the performance of those regression models was evaluated via comparison with the surface $NO_2$ VMR data obtained from in situ measurements (in situ $NO_2$ VMR) in 2012. The monthly mean surface $NO_2$ VMRs estimated by M3M showed good agreements with those of in situ measurements(avg. R = 0.77). In terms of the daily (13:45LT) $NO_2$ estimation, the highest correlations were found between the daily surface $NO_2$ VMRs estimated by M3D and in-situ $NO_2$ VMRs (avg. R = 0.55). The estimated surface $NO_2$ VMRs by three modelstend to be underestimated. We also discussed the performance of these empirical modelsfor surface $NO_2$ VMR estimation with respect to otherstatistical data such asroot mean square error (RMSE), mean bias, mean absolute error (MAE), and percent difference. This present study shows a possibility of estimating surface $NO_2$ VMR using the satellite measurement.
Kim Kyoung-Ho;Park Jae-Sung;Lee Ho-Jin;Youn Ju-Heum
Journal of The Korean Society of Agricultural Engineers
/
v.47
no.5
/
pp.3-13
/
2005
The present study examined the 3 dimensional space distribution characteristics of sea water intrusion using data available from previous observations. For this study, we used 3D FEMWATER, which is a 3 dimensional finite element model. The target area was around Daechang-ri, Gimje-si, Jeollabuk-do. The area is relatively easy to formulate a conceptual model and has observation wells in operation for surveying sea water intrusion. Considering the uncertainty of numerical simulation, we analyzed sensitivity to hydraulic conductivity, which has a relatively higher effect. According to the result of the analysis, the variation of TDS concentration had an error range of $-1,336{\~}+107 mg/{\iota}$. Taking note that the survey data from observation wells were collected when the boundary between fresh water and sea water in the aquifer was in equilibrium, we set the range of time for numerical simulation and estimated the spatial distribution of TDS concentration as the range of sea water intrusion. According to the result of estimation, the spatial distribution of TDS concentration calculated when 1,440 days were simulated was taken as the range of sea water intrusion. Using the result of calculation, we can draw not only vertical views for a certain section but also horizontal views of different depth. These views will be greatly helpful in understanding the spatial distribution of the range of sea water intrusion. In addition, the result of this study can be used rationally in proposing an optimal quantity of water pumping through investigating the moving route of sea water intrusion over time in order to prevent excessive water pumping and to maintain an optimal number of water pumping wells per interval.
Journal of Korean Society for Geospatial Information Science
/
v.17
no.2
/
pp.71-79
/
2009
In this study, a distributed rainfall-runoff model, K-DRUM, based on physical kinematic wave was developed to simulate temporal and spatial distribution of flood discharge considering grid rainfall and grid based GIS hydrological parameters. The developed model can simulate temporal and spatial distribution of surface flow and sub-surface flow during flood period, and input parameters of ASCII format as pre-process can be extracted using ArcView. Output results of ASCII format as post-process can be created to express distribution of discharge in the watershed using GIS and express discharge as animation using TecPlot. an auto calibration method for initial soil moisture conditions that have an effect on discharge in the physics based K-DRUM was additionally developed. The baseflow for Namgang Dam Watershed was analysed to review the applicability of the developed auto calibration method. The accuracy of discharge analysis for application of the method was evaluated using RMSE and NRMSE. Problems in running time and inaccuracy setting using the existing trial and error method were solved by applying an auto calibration method in setting initial soil moisture conditions of K-DRUM.
Journal of The Korean Society of Agricultural Engineers
/
v.55
no.6
/
pp.101-112
/
2013
Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) offers opportunities to make advances in many research areas including hydrology by providing near-global scale elevation measurements at a uniform resolution. Its wide coverage and complimentary online access especially benefits researchers requiring topographic information of hard-to-access areas. However, SRTM DEM also contains inherent errors, which are subject to propagation with its manipulation into analysis outputs. Sensitivity of hydrologic analysis to the errors has not been fully understood yet. This study investigated their impact on estimation of hydrologic derivatives such as slope, stream network, and watershed boundary using Monte Carlo simulation and spatial moving average techniques. Different amount of the errors and their spatial auto-correlation structure were considered in the study. Two sub-watersheds of Geum and Deadong River areas located in South and North Korea, respectively, were selected as the study areas. The results demonstrated that the spatial presentations of stream networks and watershed boundaries and their length and area estimations could be greatly affected by the SRTM DEM errors, in particular relatively flat areas. In the Deadong River area, artifacts of the SRTM DEM created sinks even after the filling process and then closed drainage basin and short stream lines, which are not the case in the reality. These findings provided an evidence that SRTM DEM alone may not enough to accurately figure out the hydrologic feature of a watershed, suggesting need of local knowledge and complementary data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.