• Title/Summary/Keyword: spatial coherency

Search Result 27, Processing Time 0.024 seconds

Seismic Behavior of Bridges Considering Ground Motion Spatial Variation (공간적으로 변화하는 입력지진으로 인한 교량의 지진거동특성)

  • Bae, Byung Ho;Choi, Kwang Kyu;Kang, Seung Woo;Song, Si Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.759-768
    • /
    • 2015
  • The ground motions of large dimensional structures such as long span bridges at different stations during an earthquake, are inevitably different, which is known as the ground motion spatial variation effect. There are many causes that may result in the spatial variability in seismic ground motion, e.g., the wave passage effect due to the different arrival times of waves at different locations; the loss of coherency due to seismic waves scattering in the heterogeneous medium of the ground; the site amplification effect owing to different local soil properties. In previous researches, the site amplification effects have not been considered or considered by a single-layered soil model only. In this study, however, the ground motion amplification and filtering effects are evaluated by multi-layered soil model. Spatially varying ground motion at the sites with different number of layers, depths, and soil characteristics are generated and the variation characteristics of ground motion time histories according to the correlation of coherency loss function and soil conditions are evaluated. For the bridge system composed of two unit bridges, seismic behavior characteristics are analyzed using the generated seismic waves as input ground motion. Especially, relative displacement due to coherency loss and site effect which can cause the unseating and pounding between girders are evaluated. As a result, considering the soil conditions of each site are always important and should not be neglected for an accurate structural response analysis.

The assessment of the Spatial Variation of the Wind Field using the Meso-velocity Scale and its Contributing Factors (중간 속도 규모를 이용한 바람장의 균질성 평가 및 영향요소 분석)

  • Lee, Seong-Eun;Shin, Sun-Hee;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.343-353
    • /
    • 2010
  • A regional wind network with complex surface conditions must be designed with sufficient space and time resolution to resolve the local circulations. In this study, the spatial variations of the wind field observed in the Seoul and Jeju regional networks were evaluated in terms of annual, seasons, and months to assess the spatial homogeneity of wind fields within the regional networks. The coherency of the wind field as a function of separation distance between stations indicated that significant coherency was sometimes not captured by the network, as inferred by low correlations between adjacent stations. A meso-velocity scale was defined in terms of the spatial variability of the wind within the network. This problem is predictably most significant with weak winds, dull prevailing wind, clear skies and significant topography. The relatively small correlations between stations imply that the wind at a given point cannot be estimated by interpolating winds from the nearest stations. For the Seoul and Jeju regional network, the meso-velocity scale has typically a same order of magnitude as the speed of the network averaged wind, revealing the large spatial variability of the Jeju network station imply topography and weather. Significant scatter in the relationship between spatial variability of the wind field and the wind speed is thought to be related to thermally-generated flows. The magnitude of the mesovelocity scale was significantly different along separation distance between stations, wind speed, intensity of prevailing wind, clear and cloudy conditions, topography. Resultant wind vectors indicate much different flow patterns along condition of contributing factors. As a result, the careful considerations on contributing factors such as prevailing wind in season, weather, and complex surface conditions with topography and land/sea contrast are required to assess the spatial variations of wind field on a regional network. The results in the spatial variation from the mesovelocity scale are useful to represent the characteristics of regional wind speed including lower surface conditions over the grid scale of large scale atmospheric model.

Comparison of the Wind Speed from an Atmospheric Pressure Map (Na Wind) and Satellite Scatterometer­observed Wind Speed (NSCAT) over the East (Japan) Sea

  • Park, Kyung-Ae;Kim, Kyung-Ryul;Kim, Kuh;Chung, Jong-Yul;Conillor, Peter-C.
    • Journal of the korean society of oceanography
    • /
    • v.38 no.4
    • /
    • pp.173-184
    • /
    • 2003
  • Major differences between wind speeds from atmospheric pressure maps (Na wind) and near­surface wind speeds derived from satellite scatterometer (NSCAT) observations over the East (Japan) Sea have been examined. The root­mean­square errors of Na wind and NSCAT wind speeds collocated with Japanese Meteorological Agency (JMA) buoy winds are about $3.84\;ms^{-1}\;and\;1.53\;ms^{-1}$, respectively. Time series of NSCAT wind speeds showed a high coherency of 0.92 with the real buoy measurements and contained higher spectral energy at low frequencies (>3 days) than the Na wind. The magnitudes of monthly Na winds are lower than NSCAT winds by up to 45%, particularly in September 1996. The spatial structures between the two are mostly coherent on basin­wide large scales; however, significant differences and energy loss are found on a spatial scale of less than 100 km. This was evidenced by the temporal EOFs (Empirical Orthogonal Functions) of the two wind speed data sets and by their two­dimensional spectra. Since the Na wind was based on the atmospheric pressures on the weather map, it overlooked small­scale features of less than 100 km. The center of the cold­air outbreak through Vladivostok, expressed by the Na wind in January 1997, was shifted towards the North Korean coast when compared with that of the NSCAT wind, whereas NSCAT winds revealed its temporal evolution as well as spatial distribution.

Influence of ground motion spatial variations and local soil conditions on the seismic responses of buried segmented pipelines

  • Bi, Kaiming;Hao, Hong
    • Structural Engineering and Mechanics
    • /
    • v.44 no.5
    • /
    • pp.663-680
    • /
    • 2012
  • Previous major earthquakes revealed that most damage of the buried segmented pipelines occurs at the joints of the pipelines. It has been proven that the differential motions between the pipe segments are one of the primary reasons that results in the damage (Zerva et al. 1986, O'Roueke and Liu 1999). This paper studies the combined influences of ground motion spatial variations and local soil conditions on the seismic responses of buried segmented pipelines. The heterogeneous soil deposits surrounding the pipelines are assumed resting on an elastic half-space (base rock). The spatially varying base rock motions are modelled by the filtered Tajimi-Kanai power spectral density function and an empirical coherency loss function. Local site amplification effect is derived based on the one-dimensional wave propagation theory by assuming the base rock motions consist of out-of-plane SH wave or combined in-plane P and SV waves propagating into the site with an assumed incident angle. The differential axial and lateral displacements between the pipeline segments are stochastically formulated in the frequency domain. The influences of ground motion spatial variations, local soil conditions, wave incident angle and stiffness of the joint are investigated in detail. Numerical results show that ground motion spatial variations and local soil conditions can significantly influence the differential displacements between the pipeline segments.

Variability of Seawater Temperature in the Coastal Waters off the Dangjin Power Plant, Asan Bay, Korea (서해 아산만 당진화력발전소 인근해역 수온 변동 특성)

  • Ro, Young-Jae;Jun, Ho-Kyoung;Choi, Yang-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.2
    • /
    • pp.43-50
    • /
    • 2002
  • This study focused on variability of the sea water temperatures observed off the Dangjin Power Plant in the central west coast of Korea for the period of 1998-1999. Spatial averaged temperature shows the annual range of $20.3^{\circ}C$, with minimum of $3.3^{\circ}C$ in February and maximum of $23.6^{\circ}C$ in August. Horizontal distribution patterns are seasonally reversing: The temperatures are increasing toward inshore of the period of April to October, while they are increasing toward of offshore for the rest of year. Spectral analyses of temperature records show significant peaks at M2 and S2 tidal periods, since the water movement in the study area is influenced by strong tide. The responses of temperature variations to tidal phase show different seasonal characteristics: The temperatures are increasing at flood phases in winter and ebb phases in summer. Amplitudes of the components at M2 and S2 periods are $0.8^{\circ}C\;and\;0.5^{\circ}C$, accounting for 70-80% of daily variation. Coherency analyses between non-tidal components of temperature and wind speed show that in summer, northerly wind components significantly coherent with temperature at 2.8 days period, while in winter, southerly wind component is coherent with 2.4 days period, with 0.6 and 0.7 day phase-lags, respectively.

Direction-of-Arrival Estimation : Signal Eigenvector Method(SEM) (도래각 추정 : 신호 고유벡터 알고리즘)

  • 김영수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.12
    • /
    • pp.2303-2312
    • /
    • 1994
  • A high resolution algorithm is presented for resolving multiple narrowband plane waves that are incident on an equispaced linear array. To overcome the deleterious effects due to coherent sources, a number of noise-eigenvector-based approaches have been proposed for narrowband signal processing. For differing reasons, each f these methods provide a less than satisfactory resolution of the coherency problem. The proposed algorithm makes use of fundamental property possessed by those eigenvectors of the spatial covariance matrix that are associated with eigenvalues that are larger than the sensor noise level. This property is then used to solve the incoherent and coherent sources incident on an equispaced linear array. Simulation results are shown to illustrate the high resolution performance achieved with this new approach relative to that obtained with MUSIC and spatial smoothed MUSIC.

  • PDF

Seismic Response Analysis of a Floating Bridge with Discrete Pontoons (이산폰툰형 부유식교량의 지진응답해석)

  • Kwon, Jang-Sup
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.47-58
    • /
    • 2005
  • Dynamic response analysis in time dimain is conducted for floating bridges with discrete pontoons subject to spatial variation of ground motions. The Spatial variation of ground motions is considered with the coherency function model which represents wave passage, incoherence and local site effects. The superstructure of the bridge is represented by space frame and elastic catenary cable elements, the abutment us modelde with the spring element of FHWA guideline for considering soil structure interaction and the concept of retardation function is utilized to consider the frequency dependency of the hydrodynamic coefficients which are obtainde by boundary element method. multiple support excitations considering the spatial variation. The noticeable amplification of the response can be shown when the spatial variation of ground motions is incorporated in the anallysis of floating bridges.

A Hybrid Shadow Testing Scheme During Ray Tracing (광선추적 수행중 혼합 음영검사에 관한 연구)

  • Eo, Kil-Su;Kyung, Chong-Min
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.3
    • /
    • pp.95-104
    • /
    • 1989
  • This paper presents a new shadow testing acceleration scheme for ray tracing called Hybrid Shadow Testing (HST) based on a conditional switching between the conventinal shadow testing method and Crow's shadow volume method, where the shadow polygons as well as the object polygons are registered onto the corresponding cells under the 3-D space subdivision environment. Despite the preprocessing time for the generation and registration of the shadow polygons, the total shadow testing time of the proposed algorithm, HST was approximately 50% of that of the conventional shadow testing method for several examples while the total ray tracing time was typically reduced by 30% from the conventional approach. This due to the selective use of the shadow volume method with a compromise between the maximal utilisation of shadow's spatial coherency and minimising the computational overhead for checking ray intersections with the shadow polygons. A parameter, $N_{th}$ denoting the critical number of shadow polygons between successive reflection points was used as a guideline for switching the shadow testing scheme between the conventional method and shadow volume method. A method for calculating $N_{th}$ from such statistical data as the number of object polygons, average polygon size average peripheral length of the polygons was proposed, resulting in good agreement with the experimental results.

  • PDF

Analysis of structure stability of Golf structure of truss (골프장 트러스구조 구조안전성 검토사례)

  • Kang, Dong-Gyun;Yoon, Sung-Won;Hong, Hyun-Pyo
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.275-278
    • /
    • 2004
  • This paper focused on problems of design, construction, and maintenance caused by construction implementation processes. They were analyzed through case study of structure safety diagnosis projects. From the case study, it is expected that the introduction of Construction Management from the first stage of procurement will improve construction cost increase or burden on small design company. It strengthens coherent management from design and source contractor selection to build review of responsibility. The coherency will prevent changes in designing or infirm unreliable construction. It is desirable that expert opinions are considered when structure changes and establishment occur and that, if necessary, actions such as source selection, periodic audits, and diagnosis arc checked and fed back to maintenance.

  • PDF

Effect of soil flexibility on bridges subjected to spatially varying excitations

  • Li, Bo;Chouw, Nawawi
    • Coupled systems mechanics
    • /
    • v.3 no.2
    • /
    • pp.213-232
    • /
    • 2014
  • Pounding is a major cause of bridge damage during earthquakes. In an extreme situation, it can even contribute to the unseating of bridge girders. Long-span bridges will inevitably experience spatially varying ground motions. Soil-structure interaction (SSI) may play a significant role in the structural response of these structures. The objective of this research is to experimentally investigate the effect of spatially varying ground motions on the response of a three-segment bridge considering SSI and pounding. To incorporate SSI, the model was placed on sand contained in sandboxes. The sandboxes were fabricated using soft rubber in order to minimise the rigid wall effect. The spatially varying ground motion inputs were simulated based on the New Zealand design spectra for soft soil, shallow soil and strong rock conditions, using an empirical coherency loss function. The results show that with pounding, SSI can amplify the pier bending moments and the relative opening displacements.