• 제목/요약/키워드: sparsity

검색결과 334건 처리시간 0.023초

LASSO를 사용한 시간 지연 추정 알고리즘 (Time Delay Estimation Using LASSO (Least Absolute Selection and Shrinkage Operator))

  • 임준석;편용국;최석임
    • 한국통신학회논문지
    • /
    • 제39B권10호
    • /
    • pp.715-721
    • /
    • 2014
  • 두 개 센서에 도래하는 신호 간의 시간 지연을 추정 방법에는 여러 가지가 존재한다. 그 중에서 채널 추정 기법을 기반으로 한 방법의 경우는 두 센서에 입력되는 서로 다른 신호간의 상대적인 지연을 채널의 임펄스 응답처럼 추정하도록 되어 있다. 이 경우에는 해당 채널의 특성이 희박 채널의 특성을 가지고 있다. 기존의 방법들은 채널의 희박성을 이용하지 못하고 있는 방법이 대부분이다. 본 논문에서는 채널의 희박성을 이용하기 위하여 희박신호 최적화 방법의 하나인 LASSO 최적화를 사용한 시간 지연 추정 방법을 제안한다. 제안한 방법을 기존의 방법과 비교하여, 백색 가우시안 신호원에서는 약 10dB 이상의 성능 개선 결과를 보이고, 유색 신호원에서도 갑자기 추정성능이 열하되는 현상이 없음을 보인다.

Factorization Machine을 이용한 추천 시스템 설계 (A Recommender System Using Factorization Machine)

  • 정승윤;김형중
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권4호
    • /
    • pp.707-712
    • /
    • 2017
  • 데이터의 양이 기하급수적으로 증가함에 따라 추천 시스템(recommender system)은 영화, 도서, 음악 등 다양한 산업에서 관심을 받고 있고 연구 대상이 되고 있다. 추천시스템은 사용자들의 과거 선호도 및 클릭스트림(click stream)을 바탕으로 사용자에게 적절한 아이템을 제안하는 것을 목적으로 한다. 대표적인 예로 넷플릭스의 영화 추천 시스템, 아마존의 도서 추천 시스템 등이 있다. 기존의 선행 연구는 협업적 여과, 내용 기반 추천, 혼합 방식의 3가지 방식으로 크게 분류할 수 있다. 하지만 기존의 추천 시스템은 희소성(sparsity), 콜드스타트(cold start), 확장성(scalability) 문제 등의 단점들이 있다. 이러한 단점들을 개선하고 보다 정확도가 높은 추천 시스템을 개발하기 위해 실제 온라인 기업의 상품구매 데이터를 이용해 factorization machine으로 추천시스템을 설계했다.

이동통신 환경에서 다중신호의 DOA 추정과 적응 빔성형 (DOA Estimation of Multiple Signal and Adaptive Beam-forming for Mobile Communication Environments)

  • 양두영;이민수
    • 한국콘텐츠학회논문지
    • /
    • 제10권12호
    • /
    • pp.34-42
    • /
    • 2010
  • 이동통신 환경에서 매개변수와 비매개변수추정 알고리즘을 토대로 DOA와 적응 빔성형 알고리즘을 연구하고 분석하였다. 매개변수추정 알고리즘에서는 배열안테나로 수신된 신호의 상관행렬로부터 신호성분과 잡음성분에 대한 고유치를 구하고, 그 고유치들로부터 전력스펙트럼을 판별하였다. 반면에 비매개변수추정 알고리즘에서는 입사각의 함수로써 신호에너지를 추정하기 위하여 고분해능과 잡음억압을 도출하도록 비이차놈을 사용하여 규칙화 목적함수를 최소화하였다. 그리고 나서, 신호와 잡음공간 조정벡터로부터 DOA를 추정하였고, 공간벡터에 의하여 도출된 가중치를 적용하여 적응 빔성형 패턴을 개선하였다. 따라서 희소강제조정을 갖는 개선된 방향성 추정 알고리즘은 다른 알고리즘들과 비교하여 잡음 억제와 고분해능을 갖는다.

다차원 대용량 저밀도 데이타 큐브에 대한 고밀도 서브 큐브 추출 알고리즘 (Dense Sub-Cube Extraction Algorithm for a Multidimensional Large Sparse Data Cube)

  • 이석룡;전석주;정진완
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제33권4호
    • /
    • pp.353-362
    • /
    • 2006
  • 데이타 웨어하우스는 기업이나 사회 전반에서 사용되는 방대한 데이타를 저장하고, 효율적인 분석을 가능하게 하는 데이타 저장소로써, 점점 그 활용도가 증가하고 있다. 본 연구에서는 이러한 데이타 웨어하우스 구축 기술의 핵심이 되는 다차원 데이타 큐브 (multidimensional data cube) 기술을 연구하는 데 목적이 있다. 고차원 데이타 큐브에는 필연적으로 내재하는 데이타의 희소성 (sparsity)에 의한 검색 오버헤드가 있다. 본 연구에서는 이러한 오버헤드를 현격하게 감소시키는 알고리즘을 제시함으로써, 데이타 웨어하우스의 효율을 높이는 데 기여한다. 즉, 고차원의 희소 데이타 큐브에서 데이타가 조밀하게 밀집된 영역들을 찾아 그 영역을 중심으로 서브 큐브를 구축하여, 데이타 검색 시에 전체의 데이타 큐브를 대상으로 하지 않고 해당 서브 큐브만으로 검색 대상을 제한시킴으로써 검색 효율을 높이는 알고리즘이다. 본 논문에서는 다 차원 대용량의 희소 데이타 큐브로부터 밀도가 높은 서브 큐브를 찾기 위하여 비트맵과 히스토그램에 기반한 알고리즘을 제안하며, 실험을 통하여 제안한 알고리즘의 효용성을 보여준다.

인자점수와 자기조직화지도를 이용한 희소한 문서데이터의 군집화 (Sparse Document Data Clustering Using Factor Score and Self Organizing Maps)

  • 전성해
    • 한국지능시스템학회논문지
    • /
    • 제22권2호
    • /
    • pp.205-211
    • /
    • 2012
  • 통계학과 기계학습의 다양한 기법을 이용하여 문서집합을 군집화하기 위해서는 우선 군집화분석에 적합한 데이터구조로 대상 문서집합을 변환해야 한다. 문서군집화를 위한 대표적인 구조가 문서-단어행렬이다. 각 문서에서 발생한 특정단어의 빈도값을 갖는 문서-단어행렬은 상당부분의 빈도값이 0인 희소성문제를 갖는다. 이 문제는 문서군집화의 성능에 직접적인 영향을 주어 군집화결과의 성능감소를 초래한다. 본 논문에서는 문서-단어행렬의 희소성문제를 해결하기 위하여 인자분석을 통한 인자점수를 이용하였다. 즉, 문서-단어행렬을 문서-인자점수행렬로 바꾸어 문서군집화의 입력데이터로 사용하였다. 대표적인 문서군집화 알고리즘인 자기조직화지도에 적용하여 문서-단어행렬과 문서-인자점수행렬에 대한 문서군집화의 결과들을 비교하였다.

신용카드 추천을 위한 다중 프로파일 기반 협업필터링 (Collaborative Filtering for Credit Card Recommendation based on Multiple User Profiles)

  • 이원철;윤협상;정석봉
    • 산업경영시스템학회지
    • /
    • 제40권4호
    • /
    • pp.154-163
    • /
    • 2017
  • Collaborative filtering, one of the most widely used techniques to build recommender systems, is based on the idea that users with similar preferences can help one another find useful items. Credit card user behavior analytics show that most customers hold three or less credit cards without duplicates. This behavior is one of the most influential factors to data sparsity. The 'cold-start' problem caused by data sparsity prevents recommender system from providing recommendation properly in the personalized credit card recommendation scenario. We propose a personalized credit card recommender system to address the cold-start problem, using multiple user profiles. The proposed system consists of a training process and an application process using five user profiles. In the training process, the five user profiles are transformed to five user networks based on the cosine similarity, and an integrated user network is derived by weighted sum of each user network. The application process selects k-nearest neighbors (users) from the integrated user network derived in the training process, and recommends three of the most frequently used credit card by the k-nearest neighbors. In order to demonstrate the performance of the proposed system, we conducted experiments with real credit card user data and calculated the F1 Values. The F1 value of the proposed system was compared with that of the existing recommendation techniques. The results show that the proposed system provides better recommendation than the existing techniques. This paper not only contributes to solving the cold start problem that may occur in the personalized credit card recommendation scenario, but also is expected for financial companies to improve customer satisfactions and increase corporate profits by providing recommendation properly.

사회연결망정보를 고려하는 SVD 기반 추천시스템 (Recommender Systems using SVD with Social Network Information)

  • 김민건;김경재
    • 지능정보연구
    • /
    • 제22권4호
    • /
    • pp.1-18
    • /
    • 2016
  • 협업필터링은 사용자의 선호도 평가자료를 이용하여 특정 사용자의 특정 상품에 대한 선호도를 예측하고 이를 이용하여 유사한 사용자에게 상품을 추천한다. 협업필터링은 전자상거래에서의 정보 과잉현상을 줄여 주기에 가장 인기 있는 개인화 기법이다. 그러나 협업필터링은 희소성과 확장성 문제 등을 가지고 있다. 본 연구에서는 희소성과 확장성 문제와 같은 협업필터링의 주요 한계점을 보완하고 추천과정에 사용자의 정성적이고 감성적인 정보를 반영하도록 하기 위하여 사회연결망 정보와 협업필터링을 접목하는 방안을 이용한다. 본 논문에서는 특이값 분해에 내재적인 정보를 반영할 수 있도록 확장한 SVD++에 사회연결망 정보를 고려할 수 있도록 한 Social SVD++ 알고리듬을 협업필터링에 접목한 새로운 추천 알고리듬을 이용한다. 특히, 본 연구는 추천과정에 실제 사용자의 사회연결망 정보를 반영하여 모형의 성과를 평가할 것이다.

사용자 선호도와 시각적 기술자를 이용한 사용자 프로파일 기반 이미지 추천 알고리즘 (Image recommendation algorithm based on profile using user preference and visual descriptor)

  • 김덕환;양준식;조원희
    • 정보처리학회논문지D
    • /
    • 제15D권4호
    • /
    • pp.463-474
    • /
    • 2008
  • 정보 기술과 인터넷의 발전은 멀티미디어 컨텐츠의 양에 있어서 폭발적인 성장을 가져 왔으며 이러한 멀티미디어 컨텐츠 양의 증가는 이용자의 요구에 맞는 멀티미디어 컨텐츠 추천에 대한 필요성을 더 증가 시켰다. 현재까지 일반상품과 멀티미디어 컨텐츠 추천을 위한 기법에는 협업필터링 (CF: Collaborative Filtering)이 있다. 하지만 기존의 CF 기법은 이미지가 갖고 있는 시각적 특징을 제대로 표현하지 못하고 있으며, 입력 데이터의 희박성 (Sparsity) 문제와 신상품 추천 문제 그리고 선호도의 동적인 변화 문제를 포함하고 있기 때문에 이미지 컨텐츠 추천에는 적합하지 않다. 이와 같은 기존의 CF기법의 단점을 해결하기 위해서 본 논문에서는 새로운 이미지 추천 방법으로 FBCF (Feature Based Collaborative Filtering) 기법을 제안한다. FBCF 기법은 시각적 특징을 선호도에 따라 군집화한 새로운 사용자 프로파일 구성방법을 제시하며, 선호도 피드백을 통하여 구매자의 현재 성향을 추천에 반영할 수 있다. 실제 모바일 이미지 데이터를 사용한 실험에서 FBCF 기법이 기존의 CF 기법보다 400% 향상된 성능을 보임을 확인할 수 있다.

로그-합 규준화와 정준형 상관 분석을 이용한 시간 지연 추정에 관한 연구 (A time delay estimation method using canonical correlation analysis and log-sum regularization)

  • 임준석;편용국;이석진;정명준
    • 한국음향학회지
    • /
    • 제36권4호
    • /
    • pp.279-284
    • /
    • 2017
  • 음원 위치 추정은 여러 방면에서 쓰임이 있는 응용 기술이다. 음원의 위치를 추정하기 위한 기본 기법 중에는 시간 지연 추정 기법이 있다. 이 기법에선 음원의 위치를 추정하기 위해서 두 개 또는 그 이상의 수신기에 들어오는 신호간의 상대적 시간 지연을 알아내야 한다. 시간 지연 추정 기법에는 일반화 된 상호 상관(Generalized Cross-Correlation, GCC) 대표적이지만, 정준형 상관 분석(Canonical Correlation Analysis, CCA)을 이용한 방법도 있다. 본 논문에서는 시간 지연 추정용 정준형 상관 분석의 고유벡터의 희소성을 이용하기 위해 새로운 알고리즘을 제안한다. 이를 위해서 로그-합(log-sum) 정규화를 이용한다. 본 논문에서는 서로 다른 여러 신호 대 잡음비 환경 하에서 비교 모의실험을 하였고, 이 비교 실험을 통하여 얻는 데이터를 통해서 제안한 새 정준형 상관 분석 기반 알고리즘이 이전의 정준형 상관분석 기반 알고리즘이나 기존 GCC보다 더 우수하다는 것을 보인다.

WV-BTM: SNS 단문의 주제 분석을 위한 토픽 모델 정확도 개선 기법 (WV-BTM: A Technique on Improving Accuracy of Topic Model for Short Texts in SNS)

  • 송애린;박영호
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권1호
    • /
    • pp.51-58
    • /
    • 2018
  • SNS의 사용자와 데이터량이 폭발적으로 증가함에 따라, SNS 빅 데이터를 기반으로 한 연구들이 활발히 진행되고 있다. 특히 소셜 마이닝 분야에서는 비 분류된 대용량 SNS 텍스트 데이터로부터 각 텍스트 별 유사성을 파악하고, 그로부터 트렌드를 추출하기 위해 대표적인 토픽 모델 기법인 LDA를 사용한다. 그러나 LDA는 단문 데이터에 대하여 비 빈발 단어 출현으로 인한 의미 희박성(semantic sparsity)으로 인해 양질의 주제 추론이 어렵다는 한계를 가진다. BTM 연구는 이와 같은 LDA의 한계점을 두 단어의 조합을 통해 개선하였으나, BTM 또한 조합된 단어 중 높은 빈도수의 단어에 더 큰 영향을 받아 각 주제와의 연관성을 고려한 가중치 계산이 불가능하다는 한계점을 지닌다. 본 논문은 단어 간의 의미적 연관성을 반영함으로써 기존 연구 BTM의 정확도를 개선하는 방안을 모색한다.