• 제목/요약/키워드: sparse vector autoregressive model

검색결과 6건 처리시간 0.024초

희박 벡터자기상관회귀 모형을 이용한 한국의 미세먼지 분석 (The sparse vector autoregressive model for PM10 in Korea)

  • 이원석;백창룡
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권4호
    • /
    • pp.807-817
    • /
    • 2014
  • 본 논문은 최근 많은 관심을 받는 미세먼지 (PM10)의 일별 평균농도에 대해서 전국 16개 시도에서 2008년부터 2011년까지 관측한 다변량 시계열 자료에 대한 연구이다. 다변량 시계열 모형을 이용해서 시간 및 공간에 대한 상관관계를 동시에 고려, 일변량 혹은 특정 지역에 국한해서 분석한 기존의 연구와 차별성을 두었다. 또한 Davis 등 (2013)이 제안한 부분 스펙트럼 일관성 (partial spectral coherence)을 통해 다른 지역간의 상호 의존성을 파악하고 이를 토대로 변수 선택을 통해 희박벡터자기회귀모형 (sVAR; sparse vector autoregressive model)을 적합하는 방법론을 적용하여 고차원 자료 분석의 단점 및 한계를 보완하였으며 예측력 비교를 통해서 sVAR 모형 적합의 타당성을 검증하였다.

Sparse vector heterogeneous autoregressive model with nonconvex penalties

  • Shin, Andrew Jaeho;Park, Minsu;Baek, Changryong
    • Communications for Statistical Applications and Methods
    • /
    • 제29권1호
    • /
    • pp.53-64
    • /
    • 2022
  • High dimensional time series is gaining considerable attention in recent years. The sparse vector heterogeneous autoregressive (VHAR) model proposed by Baek and Park (2020) uses adaptive lasso and debiasing procedure in estimation, and showed superb forecasting performance in realized volatilities. This paper extends the sparse VHAR model by considering non-convex penalties such as SCAD and MCP for possible bias reduction from their penalty design. Finite sample performances of three estimation methods are compared through Monte Carlo simulation. Our study shows first that taking into cross-sectional correlations reduces bias. Second, nonconvex penalties performs better when the sample size is small. On the other hand, the adaptive lasso with debiasing performs well as sample size increases. Also, empirical analysis based on 20 multinational realized volatilities is provided.

Adaptive lasso를 이용한 희박벡터자기회귀모형에서의 변수 선택 (Adaptive lasso in sparse vector autoregressive models)

  • 이슬기;백창룡
    • 응용통계연구
    • /
    • 제29권1호
    • /
    • pp.27-39
    • /
    • 2016
  • 본 논문은 다차원의 시계열 자료 분석에서 효율적인 희박벡터자기회귀모형에서의 모수 추정에 대해서 연구한다. 희박벡터자기회귀모형은 영에 가까운 계수를 정확이 영으로 둠으로써 희박성을 확보한다. 따라서 변수 선택과 모수 추정을 한꺼번에 할 수 있는 lasso를 이용한 방법론을 희박벡터자기회귀모형의 추정에 쓸 수 있다. 하지만 Davis 등(2015)에서는 모의실험을 통해 일반적인 lasso의 경우 영이아닌 계수를 참값보다 훨씬 더 많이 찾아 희박성에 약점이 있음을 보고하였다. 이에 따라 본 연구는 희박벡터자기회귀모형에 adaptive lasso를 이용하면 일반 lasso보다 희박성을 비롯한 전반적인 모수의 추정이 매우 유의하게 개선됨을 보인다. 또한 adaptive lasso에서 쓰이는 튜닝 모수들에 대한 선택도 아울러 논의한다.

필터링된 잔차를 이용한 희박벡터자기회귀모형에서의 변수 선택 측도 (Filtered Coupling Measures for Variable Selection in Sparse Vector Autoregressive Modeling)

  • 이승규;백창룡
    • 응용통계연구
    • /
    • 제28권5호
    • /
    • pp.871-883
    • /
    • 2015
  • 벡터자기회귀모형은 다차원의 시계열 자료간의 선형종속 관계를 연구하는데 효율적인 모형이다. 하지만 차원이 높아질 경우 추정해야할 모수가 급격히 증가하여 추정이 불안정해지고 예측력의 저하 및 해석의 어려움을 동반하는 문제를 가지고 있다. 이를 보완하기 위해서 많은 계수를 0으로 두는 희박벡터자기회귀모형이 제안되었고 고차원 시계열 분석에서 유용함이 밝혀졌다. 이 논문에서는 희박벡터자기회귀모형 추정에 있어서 어떠한 계수를 0으로 두어야 하는지를 판단해주는 한 쌍의 변수에 대한 상관 정도를 추정해주는 커플링 측도를 제안한다. 먼저 이 논문에서는 부분 스펙트럼 일관성에 기반을 둔 커플링 측도를 사용한 변수 선택의 경우 다른 변수의 효과를 제거한 잔차에 기반을 두었기에 좋은 효율성을 보임을 밝힌다. 하지만 부분 스펙트럼 일관성의 경우 벡터자기회귀모형 계수의 비대칭성을 고려하지 못한다는 단점이 있어 이를 보완하고자 필터링을 통해 다른 변수의 효과를 제거한 잔차에 기반을 둔 동시에 비대칭성을 가지는 커플링 측도들, 필터링된 잔차를 이용한 교차 상관성과 그래인저 인과관계를 제안한다. 모의실험을 통해 우리가 제안한 방법론들이 두터운 꼬리를 가지거나 높은 차수의 희박벡터자기회귀모형의 경우에도 매우 정확하게 0이 아닌 변수를 선택함을 보인다.

희박 벡터 자기 회귀 모형의 로버스트 추정 (Robust estimation of sparse vector autoregressive models)

  • 김동영;백창룡
    • 응용통계연구
    • /
    • 제35권5호
    • /
    • pp.631-644
    • /
    • 2022
  • 본 논문은 고차원 시계열 자료에 이상점이 존재하는 경우 희박벡터자기회귀모형(sparse VAR; sVAR)의 모수를 강건하게 추정하는 방법에 대해서 연구하였다. 먼저 Xu 등 (2008)이 독립인 자료에서 밝혔듯이 adaptive lasso 방법이 sVAR 모형에서도 어느 정도의 강건함을 가짐을 모의 실험을 통해 알 수 있었다. 하지만, 이상점의 개수가 증가하거나 이상점의 영향력이 커지는 경우 효율성이 현저히 저하되는 현상도 관찰할 수 있었다. 따라서 이를 개선하기 위해서 최소절대편차(least absolute deviation; LAD)와 Huber 함수를 기반으로 벌점화 시키는 adaptive lasso를 이용하여 sVAR 모형을 추정하는 방법을 본 논문에서는 제안하고 그 성능을 검토하였다. 모의 실험을 통해 제안한 로버스트 추정 방법이 이상점이 존재하는 경우에 모수 추정을 더 정확하게 하고 예측 성능도 뛰어남을 확인했다. 또한 해당 방법론들을 전력사용량 데이터에 적용한 결과 이상점으로 의심되는 시점들이 존재하였고, 이를 고려하여 강건하게 추정하는 제안한 방법론이 더 좋은 예측 성능을 보임을 확인할 수 있었다.

밴드구조 VHAR 모형 (Banded vector heterogeneous autoregression models)

  • 김상태;백창룡
    • 응용통계연구
    • /
    • 제36권6호
    • /
    • pp.529-545
    • /
    • 2023
  • 본 논문에서는 장기 기억성을 가지는 고차원 시계열 데이터 분석에 유용한, 밴드 구조의 계수행렬들을 가지는 밴드구조 VHAR (Banded-VHAR) 모형을 제안한다. 밴드구조 VHAR 모형은 인접한 차원의 시계열에서만 상관구조를 가지는 성근 고차원 시계열 모형으로 밴드구조에 영향을 주는 요인으로는 대표적으로 지리적 특성이 있다. 밴드구조 VHAR 모형의 빠른 추정을 위해 본 논문은 행별추정방법을 사용하고 또 밴드의 크기를 추정하기 위해 BIC와 잔차제곱합의 비율을 이용한 추정 방법을 소개하였다. 더불어 모의 실험을 통해서 제안한 추정 방법의 점근적 일치성을 확인하였다. 실증자료 분석으로 지역별 초미세먼지 및 아파트 거래량 자료를 활용하여 모형을 적용한 결과 밴드구조 VHAR 모형이 표본외예측 능력의 우수하고, 지리적정보에 기반하여 모형의 해석이 용이하다는 큰 장점이 있음을 살펴보았다.