• Title/Summary/Keyword: sparse principal component analysis

Search Result 15, Processing Time 0.022 seconds

Hierarchically penalized sparse principal component analysis (계층적 벌점함수를 이용한 주성분분석)

  • Kang, Jongkyeong;Park, Jaeshin;Bang, Sungwan
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.1
    • /
    • pp.135-145
    • /
    • 2017
  • Principal component analysis (PCA) describes the variation of multivariate data in terms of a set of uncorrelated variables. Since each principal component is a linear combination of all variables and the loadings are typically non-zero, it is difficult to interpret the derived principal components. Sparse principal component analysis (SPCA) is a specialized technique using the elastic net penalty function to produce sparse loadings in principal component analysis. When data are structured by groups of variables, it is desirable to select variables in a grouped manner. In this paper, we propose a new PCA method to improve variable selection performance when variables are grouped, which not only selects important groups but also removes unimportant variables within identified groups. To incorporate group information into model fitting, we consider a hierarchical lasso penalty instead of the elastic net penalty in SPCA. Real data analyses demonstrate the performance and usefulness of the proposed method.

An improved kernel principal component analysis based on sparse representation for face recognition

  • Huang, Wei;Wang, Xiaohui;Zhu, Yinghui;Zheng, Gengzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2709-2729
    • /
    • 2016
  • Representation based classification, kernel method and sparse representation have received much attention in the field of face recognition. In this paper, we proposed an improved kernel principal component analysis method based on sparse representation to improve the accuracy and robustness for face recognition. First, the distances between the test sample and all training samples in kernel space are estimated based on collaborative representation. Second, S training samples with the smallest distances are selected, and Kernel Principal Component Analysis (KPCA) is used to extract the features that are exploited for classification. The proposed method implements the sparse representation under ℓ2 regularization and performs feature extraction twice to improve the robustness. Also, we investigate the relationship between the accuracy and the sparseness coefficient, the relationship between the accuracy and the dimensionality respectively. The comparative experiments are conducted on the ORL, the GT and the UMIST face database. The experimental results show that the proposed method is more effective and robust than several state-of-the-art methods including Sparse Representation based Classification (SRC), Collaborative Representation based Classification (CRC), KCRC and Two Phase Test samples Sparse Representation (TPTSR).

Feature Extraction via Sparse Difference Embedding (SDE)

  • Wan, Minghua;Lai, Zhihui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3594-3607
    • /
    • 2017
  • The traditional feature extraction methods such as principal component analysis (PCA) cannot obtain the local structure of the samples, and locally linear embedding (LLE) cannot obtain the global structure of the samples. However, a common drawback of existing PCA and LLE algorithm is that they cannot deal well with the sparse problem of the samples. Therefore, by integrating the globality of PCA and the locality of LLE with a sparse constraint, we developed an improved and unsupervised difference algorithm called Sparse Difference Embedding (SDE), for dimensionality reduction of high-dimensional data in small sample size problems. Significantly differing from the existing PCA and LLE algorithms, SDE seeks to find a set of perfect projections that can not only impact the locality of intraclass and maximize the globality of interclass, but can also simultaneously use the Lasso regression to obtain a sparse transformation matrix. This characteristic makes SDE more intuitive and more powerful than PCA and LLE. At last, the proposed algorithm was estimated through experiments using the Yale and AR face image databases and the USPS handwriting digital databases. The experimental results show that SDE outperforms PCA LLE and UDP attributed to its sparse discriminating characteristics, which also indicates that the SDE is an effective method for face recognition.

Speech Denoising via Low-Rank and Sparse Matrix Decomposition

  • Huang, Jianjun;Zhang, Xiongwei;Zhang, Yafei;Zou, Xia;Zeng, Li
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.167-170
    • /
    • 2014
  • In this letter, we propose an unsupervised framework for speech noise reduction based on the recent development of low-rank and sparse matrix decomposition. The proposed framework directly separates the speech signal from noisy speech by decomposing the noisy speech spectrogram into three submatrices: the noise structure matrix, the clean speech structure matrix, and the residual noise matrix. Evaluations on the Noisex-92 dataset show that the proposed method achieves a signal-to-distortion ratio approximately 2.48 dB and 3.23 dB higher than that of the robust principal component analysis method and the non-negative matrix factorization method, respectively, when the input SNR is -5 dB.

Greedy Learning of Sparse Eigenfaces for Face Recognition and Tracking

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.162-170
    • /
    • 2014
  • Appearance-based subspace models such as eigenfaces have been widely recognized as one of the most successful approaches to face recognition and tracking. The success of eigenfaces mainly has its origins in the benefits offered by principal component analysis (PCA), the representational power of the underlying generative process for high-dimensional noisy facial image data. The sparse extension of PCA (SPCA) has recently received significant attention in the research community. SPCA functions by imposing sparseness constraints on the eigenvectors, a technique that has been shown to yield more robust solutions in many applications. However, when SPCA is applied to facial images, the time and space complexity of PCA learning becomes a critical issue (e.g., real-time tracking). In this paper, we propose a very fast and scalable greedy forward selection algorithm for SPCA. Unlike a recent semidefinite program-relaxation method that suffers from complex optimization, our approach can process several thousands of data dimensions in reasonable time with little accuracy loss. The effectiveness of our proposed method was demonstrated on real-world face recognition and tracking datasets.

Feature selection for text data via sparse principal component analysis (희소주성분분석을 이용한 텍스트데이터의 단어선택)

  • Won Son
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.6
    • /
    • pp.501-514
    • /
    • 2023
  • When analyzing high dimensional data such as text data, if we input all the variables as explanatory variables, statistical learning procedures may suffer from over-fitting problems. Furthermore, computational efficiency can deteriorate with a large number of variables. Dimensionality reduction techniques such as feature selection or feature extraction are useful for dealing with these problems. The sparse principal component analysis (SPCA) is one of the regularized least squares methods which employs an elastic net-type objective function. The SPCA can be used to remove insignificant principal components and identify important variables from noisy observations. In this study, we propose a dimension reduction procedure for text data based on the SPCA. Applying the proposed procedure to real data, we find that the reduced feature set maintains sufficient information in text data while the size of the feature set is reduced by removing redundant variables. As a result, the proposed procedure can improve classification accuracy and computational efficiency, especially for some classifiers such as the k-nearest neighbors algorithm.

Comparisons of Linear Feature Extraction Methods (선형적 특징추출 방법의 특성 비교)

  • Oh, Sang-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.4
    • /
    • pp.121-130
    • /
    • 2009
  • In this paper, feature extraction methods, which is one field of reducing dimensions of high-dimensional data, are empirically investigated. We selected the traditional PCA(Principal Component Analysis), ICA(Independent Component Analysis), NMF(Non-negative Matrix Factorization), and sNMF(Sparse NMF) for comparisons. ICA has a similar feature with the simple cell of V1. NMF implemented a "parts-based representation in the brain" and sNMF is a improved version of NMF. In order to visually investigate the extracted features, handwritten digits are handled. Also, the extracted features are used to train multi-layer perceptrons for recognition test. The characteristic of each feature extraction method will be useful when applying feature extraction methods to many real-world problems.

Application of couple sparse coding ensemble on structural damage detection

  • Fallahian, Milad;Khoshnoudian, Faramarz;Talaei, Saeid
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.1-14
    • /
    • 2018
  • A method is proposed to detect structural damages in the presence of damping using noisy data. This method uses Frequency Response Function (FRF) and Mode-Shapes as the input parameters for a system of Couple Sparse Coding (CSC) to study the healthy state of the structure. To obtain appropriate patterns of FRF for CSC training, Principal Component Analysis (PCA) technique is adopted to reduce the full-size FRF to overcome over-fitting and convergence problems in machine-learning training. To verify the proposed method, a numerical two-story frame structure is employed. A system of individual CSCs is trained with FRFs and mode-shapes, and then termed ensemble to detect the health condition of the structure. The results demonstrate that the proposed method is accurate in damage identification even in presence of up to 20% noisy data and 5% unconsidered damping ratio. Furthermore, it can be concluded that CSC ensemble is highly efficient to detect the location and the severity of damages in comparison to the individual CSC trained only with FRF data.

Study on Principal Sentiment Analysis of Social Data (소셜 데이터의 주된 감성분석에 대한 연구)

  • Jang, Phil-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.49-56
    • /
    • 2014
  • In this paper, we propose a method for identifying hidden principal sentiments among large scale texts from documents, social data, internet and blogs by analyzing standard language, slangs, argots, abbreviations and emoticons in those words. The IRLBA(Implicitly Restarted Lanczos Bidiagonalization Algorithm) is used for principal component analysis with large scale sparse matrix. The proposed system consists of data acquisition, message analysis, sentiment evaluation, sentiment analysis and integration and result visualization modules. The suggested approaches would help to improve the accuracy and expand the application scope of sentiment analysis in social data.

A review on robust principal component analysis (강건 주성분분석에 대한 요약)

  • Lee, Eunju;Park, Mingyu;Kim, Choongrak
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.2
    • /
    • pp.327-333
    • /
    • 2022
  • Principal component analysis (PCA) is the most widely used technique in dimension reduction, however, it is very sensitive to outliers. A robust version of PCA, called robust PCA, was suggested by two seminal papers by Candès et al. (2011) and Chandrasekaran et al. (2011). The robust PCA is an essential tool in the artificial intelligence such as background detection, face recognition, ranking, and collaborative filtering. Also, the robust PCA receives a lot of attention in statistics in addition to computer science. In this paper, we introduce recent algorithms for the robust PCA and give some illustrative examples.