• 제목/요약/키워드: spark-plasma sintering

검색결과 407건 처리시간 0.031초

액상소결 시의 β-SiC의 입자성장 방지 (Prevention of Grain Growth during the Liquid-Phase Assisted Sintering of β-SiC)

  • 길건영;노비얀토 알피안;한영환;윤당혁
    • 한국세라믹학회지
    • /
    • 제47권6호
    • /
    • pp.485-490
    • /
    • 2010
  • In our previous studies, continuous SiC fiber-reinforced SiC-matrix composites ($SiC_f$/SiC) had been fabricated by two different slurry infiltration methods: vacuum infiltration and electrophoretic deposition (EPD). 12 wt% of $Al_2O_3-Y_2O_3$-MgO with respect to SiC powder was used as additives for liquid-phase assisted sintering. After hot pressing at $1750^{\circ}C$ under 20 MPa for 2 h in Ar atmosphere, a high composite density could be achieved for both cases, whereas the problems such as large grain size and non-uniform distribution of liquid phase were observed, which was resulted in the relatively poor mechanical properties of composites. Therefore, efforts have been made to reduce the grain growth during the sintering, including the optimization for hot pressing condition and utilization of spark plasma sintering using a SiC monolith. Based on the results, spark plasma sintering was found to be effective method in decreasing the amount of sintering additive, time and grain growth, which will be explained in comparison to the results of hot pressing in this paper.

방전 플라즈마 소결법으로 제조된 silicon boride 세라믹스의 열전 특성 (Thermoelectric characteristics of the spark plasma-sintered silicon boride ceramics)

  • 심승환;이대웅;채재홍;;심광보
    • 한국결정성장학회지
    • /
    • 제15권2호
    • /
    • pp.75-78
    • /
    • 2005
  • 본 연구에서는 고온 융점과 높은 Seebeck 계수로 인해 고온 열전 재료로서 매우 우수한 silicon boride ($SiB_6$)의 고밀도 소결체를 방전 플라즈마 소결법(spark plasma sintering, SPS)을 도입하여 제조하였으며, 소결된 시편의 미세구조 및 열전 특성을 평가하였다. $1500^{\circ}C$의 비교적 저온에서 이론 밀도의 약 99%의 소결밀도로 SPS법을 통해 효과적으로 $SiB_6$를 치밀화 할 수 있었으며 이들 시편들의 열전특성 평가로부터, hot-press법으로 제조된 시편과 비교하여 매우 향상된 Seebeck 계수를 얻을 수 있었으며 상대적으로 높은 출력인자 값을 나타냈다.

Eutectic Nanocomposites for Thermophotovoltaic Application

  • Han, Young-Hwan;Lee, Jae-Hyung;Kakegawa, Kazuyuki
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권6호
    • /
    • pp.249-252
    • /
    • 2010
  • The ground amorphous powder was consolidated into a dense sintered body with a typical ultrafine $Al_2O_3-GdAlO_3$ eutectic structure by spark plasma sintering (SPS). Sintered material with ultrafine and dense eutectic structure was obtained by an appropriate combination of rapid quenching and SPS at lower temperature and more quickly than by conventional sintering. The $Al_2O_3$-based rare earth eutectic ceramics for solar cell emitters are believed to have a higher efficiency and the $Al_2O_3$ based eutectic ceramics with ultrafine grains will be one of the promising materials showing excellent selective emitter characteristics.

Fabrication of CNT-Reinforced HAp Composites by Spark Plasma Sintering

  • Sarkar, Swapan Kumar;Youn, Min-Ho;Oh, Ik-Hyun;Lee, Byong-Taek
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1082-1083
    • /
    • 2006
  • Carbon nanotube (CNT) reinforced hydroxyapatite (HAp) composites were fabricated by using the spark plasma sintering process with surfactant modified CNT and HAp nano powder. Without the dependency on sintering temperature, the main crystal phase existed with the HAp phase although a few contents of ${\beta}-TCP$ (Tri calcium phosphate) phase were detected. The maximum fracture toughness, $(1.27\;MPa.m^{1/2})$ was obtained in the sample sintered at $1100^{\circ}C$ and on the fracture surface a typical intergranular fracture mode, as well as the pull-out pmhenomenon of CNT, was observed.

  • PDF

Microstructure and Mechanical Properties of Nanostructured Aluminum Consolidated by SPS

  • Zadra, Mario;Casari, Francesco;Molinari, Alberto
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.360-361
    • /
    • 2006
  • Nanostructured aluminum powders were obtained by means of planetary ball milling with methanol as the Process Control Agent (PCA). The behavior, during milling, was considered measuring the microhardness and grain size at different milling times. Bulk near-full density samples were sintered using the Spark Plasma Sintering technology with different schedules: temperature of $500^{\circ}C$ and $550^{\circ}C$, pressure of 30 MPa and 60 MPa and different modes of applying the pressure were changed in order to understand the behavior during sintering. All the samples retained their nanostructure with an increase of the grain size from about 46 up to 70-90 nm.

  • PDF

기계적합금화 NiAl 분말과 볼밀혼합된 (Ni+Al) 분말의 방전플라즈마소결 (Spark-Plasma Sintering of Mechanically-alloyed NiAl Powder and Ball-milled (Ni+Al) Powder Mixture)

  • 장영일;김지순;안인섭;김영도;권영순
    • 한국분말재료학회지
    • /
    • 제7권3호
    • /
    • pp.161-167
    • /
    • 2000
  • Mechanically-alloyed NiAl powder and ball-milled (Ni+Al) powder mixture were sintered by spark-plasma sintering(SPS) process. Mechanical alloying was performed in a horizontal attritor for 20 h with rotation speed of 600 rpm. (Ni+Al) powder mixtures were prepared by ball milling for 1 and 10 h with 120 rpm. Both powders were sintered at $1150^{\circ}C$ for 5 min under $10^{-3}$ torr vacuum with 50 MPa die pressure in a SPS facility. Sintered densities of 97% and 99% were obtained from mechanically-alloyed NiAl powder and (Ni+Al) powder mixture, respectively. The sintered compact of (Ni+Al) powder mixture showed large grain size by a very rapid grain growth, while the grain size of mechanically-alloyed NiAl powder compact after sintering was extremely fine(80 nm). The difference in densification behavior of both powders were discussed.

  • PDF

스파크 플라스마 소결공정의 전산모사(2부 : 해석) (Computer aided simulation of spark plasma sintering process (Part 2 : analysis))

  • 금영탁;정상철;전종훈
    • 한국결정성장학회지
    • /
    • 제16권1호
    • /
    • pp.43-48
    • /
    • 2006
  • 본 2부의 연구에서는 스파크 플라스마 소결의 온도분포, 상대밀도, 입자성장을 해석 하기 위하여 1부 연구의 시뮬레이션 이론을 바탕으로 스파크 플라스마 소결공정을 유한요소법(FEM)과 몬테카를로법(MCM)으로 전산모사하고 실험치와 비교한다. 전산모사를 통하여 소결체의 소결온도가 높을수록 입자성장이 커지고 밀도가 높아져 기계적 성질이 향상되고, 고상 소결에서 몬테카르로 단계가 증가할 수록 기공의 감소와 입자크기의 증대함을 보여 준다.

Ti ball이 coating된 임플란트 core의 제조 (The Fabrication of Implant Core Coated with Ti Balls)

  • 최동진;박동기;박성범;박승식;파코드 뚜라예프;노재승;김성진;우흥식;김승언;이준희
    • 열처리공학회지
    • /
    • 제21권2호
    • /
    • pp.94-100
    • /
    • 2008
  • The implant prototypes with various porosities were fabricated by Spark Plasma Sintering of atomized spherical titanium balls. The interface was observed by optical microscope. Sintering temperature and holding time were selected at the point of big change of Z-axis ratio during sintering. These experiments show that Spark Plasma Sintering of spherical titanium balls can be efficiently used to produce implants surfaced with titanium balls with various porosities in a short time less than 120 seconds by manipulating the current condition such as z-axis, temperature and balls size.

Mechanical Properties of Bulk Amorphous Ti50Cu20Ni20Al10 Fabricated by High-energy Ball Milling and Spark-plasma Sintering

  • Nguyen, H.V.;Kim, J.C.;Kim, J.S.;Kwon, Y.J.;Kwon, Y.S.
    • 한국분말재료학회지
    • /
    • 제16권5호
    • /
    • pp.358-362
    • /
    • 2009
  • Ti$_{50}$Cu$_{20}$Ni$_{20}$Al$_{10}$ quaternary amorphous alloy was prepared by high-energy ball milling process. A complete amorphization was confirmed for the composition of Ti$_{50}$Cu$_{20}$Ni$_{20}$Al$_{10}$ after milling for 30hrs. Differential scanning calorimetry showed a large super-cooled liquid region ($\Delta$T$_x$ = T$_x$ T$_g$, T$_g$ and T$_x$: glass transition and crystallization onset temperatures, respectively) of 80 K. Prepared amorphous powders of Ti$_{50}$Cu$_{20}$Ni$_{20}$Al$_{10}$ were consolidated by spark-plasma sintering. Densification behavior and microstructure changes were investigated. Samples sintered at higher temperature of 713 K had a nearly full density. With increasing the sintering temperature, the compressive strength increased to fracture strength of 756 MPa in the case of sintering at 733 K, which showed a 'transparticle' fracture. The samples sintered at above 693 K showed the elongation maximum above 2%.

$Al_2O_3-SiC$ 나노복합체의 방전 플라즈마 소결 특성 및 기계적 물성 (Sintering behavior and mechanical properties of the $Al_2O_3-SiC$ nano-com-posite using a spark plasma sintering technique)

  • 채재홍;김경훈;심광보
    • 한국결정성장학회지
    • /
    • 제13권6호
    • /
    • pp.309-314
    • /
    • 2003
  • 방전 플라즈마 소결법을 적용하여 $Al_2O_3$-SiC 나노 복합체를 150$0^{\circ}C$ 이하의 온도에서 완전치밀화를 이루었다. 제조된 $Al_2O_3$-SiC 복합체는 이상 결정립 성장 없이 매우 균질한 미세구조를 형성하고 있는데, 첨가된 SiC 입자는 주로 결정립 내 및 결정립계에 존재하면서 $Al_2O_3$기지상에서 결정립 성장을 억제하는데 매우 유호하였음을 확인 할 수 있다. 한편, SiC 입자의 첨가는 크랙 회절 및 브릿징 등에 의해서 유도된 재료 강도 및 인성 강화 기구에 의해서 $Al_2O_3$-SiC 복합체의 기계적 물성을 크게 향상시켰다.