• Title/Summary/Keyword: span limit

Search Result 177, Processing Time 0.027 seconds

A Study on Nonlinear Behavior Characteristics of Precast Segmental Gider (프리캐스트 세그먼트 거더의 비선형거동 특성에 관한 연구)

  • Hong Sung Nam;Koh Byung Soon;Kim Kwang Soo;Park Sun Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.89-92
    • /
    • 2004
  • Precast Segmental method was developed in germany 1950's. This method has been adoptted in long span girder mainly owing to easy construction effect. But, so far, The limit exists that this method is constructed in a portion of span and hard conveyance and foundation. This study was performed to analysis behavior difference of two rectangular section girder, spliced girder that was jointed 5-sliced 0.8m segment and monolithic girder that was produced in one body 4m span.

  • PDF

Economic performance of cable supported bridges

  • Sun, Bin;Zhang, Liwen;Qin, Yidong;Xiao, Rucheng
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.621-652
    • /
    • 2016
  • A new cable-supported bridge model consisting of suspension parts, self-anchored cable-stayed parts and earth-anchored cable-stayed parts is presented. The new bridge model can be used for suspension bridges, cable-stayed bridges, cable-stayed suspension bridges, and partially earth-anchored cable-stayed bridges by varying parameters. Based on the assumption that each structural member is in either an axial compressive or tensile state, and the stress in each member is equal to the allowable stress of the material, the material quantity for each component is calculated. By introducing the unit cost of each type of material, the estimation formula for the cost of the new bridge model is developed. Numerical examples show that the results from the estimation formula agree well with that from the real projects. The span limit of cable supported bridge depends on the span-to-height ratio and the density-to-strength ratio of cables. Finally, a parametric study is illustrated aiming at the relations between three key geometrical parameters and the cost of the bridge model. The optimization of the new bridge model indicates that the self-anchored cable-stayed part is always the dominant part with the consideration of either the lowest total cost or the lowest unit cost. It is advisable to combine all three mentioned structural parts in super long span cable supported bridges to achieve the most excellent economic performance.

Free Spanning of Offshore Pipelines by DNV

  • CHOI HAN SUK
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.47-52
    • /
    • 2005
  • This paper introduces a procedure for free span and fatigue analysis of offshore pipelines per DNV-RP-F105, 2002. The new method includes the axial force and deflection load in pipelines. The screening criteria were established to calculate the allowable span lengths in the new design codes. The screening criteria allows a certain amount of vortex-induced vibration due to wave and current loading. However, the induced pipe stresses are very small and usually below the limit stresess of typical S-N curves. In contrast, the conventional criteria did not allow any vortex-induced vibration in the free span of pipelines. Thus, the screening criteria yields reduced allowable span lengths. A simplified procedure was established to calculate the fatigue damage due to long-term current distribution. The long-term current statistics was assumed with a 3-parameter Weibull distribution. The fatigue damage was estimated for the span lengths obtained from the screening criteria for various conditions. Sample calculations show the effect of axial force for various boundary conditions. Comparisons with conventional criteria are included.

Inelastic Design of Continuous-Span Composite Plate Girder Bridges by LRFD Method (비탄성 설계법에 의한 플레이트 거더 연속교의 LRFD 설계)

  • Cho, Eun Young;Shin, Dong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.469-481
    • /
    • 2008
  • The inelastic design of the three-span continuous composite plate girder with consideration of moment redistribution over the interior pier is performed using the LRFD method. The design of the girder section, based on the inelastic method, is compared with that by the conventional elastic design. The length of the center span for the three-span continuous bridge ranges from 40m to 70m and the relative ratio of the span length is assumed to be 4:5:4. Although the AASHTO- LRFD specifications are applied in the design of the composite girder, the recently proposed new design live load is used. After determining the maximum positive and negative sections by the elastic design for various limit states, the amount of moment redistributed to the maximum positive moment section is calculated. With the increased design moment due to moment redistribution from the interior pier, the maximum positive section designed by the elastic method is checked for the strength limit state and the service limit state. The maximum negative moment section is redesigned by reducing the size of the steel girder relative to the section designed by the elastic method and the new section is checked for the service limit state. Based on the design results for the five bridges considered in this study, it is estimated that about 23% of steel can be saved in the interior pier section if it is designed by the inelastic method compared with that designed by the elastic method.

Dominant failure modes identification and structural system reliability analysis for a long-span arch bridge

  • Gao, Xin;Li, Shunlong
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.799-808
    • /
    • 2017
  • Failure of a redundant long-span bridge is often described by innumerable failure modes, which make the structural system reliability analysis become a computationally intractable work. In this paper, an innovative procedure is proposed to efficiently identify the dominant failure modes and quantify the structural reliability for a long-span bridge system. The procedure is programmed by ANSYS and MATLAB. Considering the correlation between failure paths, a new branch and bound operation criteria is applied to the traditional stage critical strength branch and bound algorithm. Computational effort can be saved by ignoring the redundant failure paths as early as possible. The reliability of dominant failure mode is computed by FORM, since the limit state function of failure mode can be expressed by the final stage critical strength. PNET method and FORM for system are suggested to be the suitable calculation method for the bridge system reliability. By applying the procedure to a CFST arch bridge, the proposed method is demonstrated suitable to the system reliability analysis for long-span bridge structure.

Fragility curves for the typical multi-span simply supported bridges in northern Pakistan

  • Waseem, Muhammad;Spacone, Enrico
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.213-223
    • /
    • 2017
  • Bridges are lifeline and integral components of transportation system that are susceptible to seismic actions, their vulnerability assessment is essential for seismic risk assessment and mitigation. The vulnerability assessment of bridges common in Pakistan is very important as it is seismically very active region and the available code for the seismic design of bridges is obsolete. This research presents seismic vulnerability assessment of three real case simply supported multi-span reinforced concrete bridges commonly found in northern Pakistan, having one, two and three bents with circular piers. The vulnerability assessment is carried through the non-linear dynamic time history analyses for the derivation of fragility curves. Finite element based numerical models of the bridges were developed in MIDAS CIVIL (2015) and analyzed through with non-linear dynamic and incremental dynamic analyses, using a suite of bridge-specific natural spectrum compatible ground motion records. Seismic responses of shear key, bearing pad, expansion joint and pier components of each bridges were recorded during analysis and retrieved for performance based analysis. Fragility curves were developed for the bearing pads, shear key, expansion joint and pier of the bridges that first reach ultimate limit state. Dynamic analysis and the derived fragility curves show that ultimate limit state of bearing pads, shear keys and expansion joints of the bridges exceed first, followed by the piers ultimate limit state for all the three bridges. Mean collapse capacities computed for all the components indicated that bearing pads, expansion joints, and shear keys exceed the ultimate limit state at lowest seismic intensities.

Determination of minimum depth of prestressed concrete I-Girder bridge for different design truck

  • Atmaca, Barbaros
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.303-311
    • /
    • 2019
  • The depth of superstructure is the summation of the height of girders and the thickness of the deck floor. In this study, it is aim to determine the maximum span length of girders and minimum depth of the superstructure of prestressed concrete I-girder bridge. For this purpose the superstructure of the bridge with the width of 10m and the thickness of the deck floor of 0.175m, which the girders length was changed by two meter increments between 15m and 35m, was taken into account. Twelve different girders with heights of 60, 75, 90, 100, 110, 120, 130, 140, 150, 160, 170 and 180 cm, which are frequently used in Turkey, were chosen as girder type. The analyses of the superstructure of prestressed concrete I girder bridge was conducted with I-CAD software. In the analyses AASHTO LRFD (2012) conditions were taken into account a great extent. The dead loads of the structural and non-structural elements forming the bridge superstructure, prestressing force, standard truck load, equivalent lane load and pedestrian load were taken into consideration. HL93, design truck of AASHTO and also H30S24 design truck of Turkish Code were selected as vehicular live load. The allowable concrete stress limit, the number of prestressed strands, the number of debonded strands and the deflection parameters obtained from analyses were compared with the limit values found in AASHTO LRFD (2012) to determine the suitability of the girders. At the end of the study maximum span length of girders and equation using for calculation for minimum depth of the superstructure of prestressed concrete I-girder bridge were proposed.

Chord bearing capacity in long-span tubular trusses

  • Kozy, B.;Boyle, R.;Earls, C.J.
    • Steel and Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.103-122
    • /
    • 2006
  • The capacity of tubular truss chords subjected to concentrated reaction forces in the vicinity of the open end (i.e., the bearing region) is not directly treated by existing design specifications; although capacity equations are promulgated for related tubular joint configurations. The lack of direct treatment of bearing capacity in existing design specifications seems to represent an unsatisfactory situation given the fact that connections very often control the design of long-span tubular structures comprised of members with slender cross-sections. The case of the simple-span overhead highway sign truss is studied, in which the bearing reaction is applied near the chord end. The present research is aimed at assessing the validity of adapting existing specifications' capacity equations from related cases so as to be applicable in determining design capacity in tubular truss bearing regions. These modified capacity equations are subsequently used in comparisons with full-scale experimental results obtained from testing carried out at the University of Pittsburgh.

Free Spanning of Offshore Pipelines by DNV 2002 (DNV 2002에 의한 해저관로의 자유경간해석)

  • Choi, Han-Suk;Joo, Joo-Kyung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.29-33
    • /
    • 2002
  • A procedure of free span and fatigue analysis of offshore pipelines was made per DNV-RP-F105, 2002. The new method includes the axial force and deflection load in pipelines. The screening criteria were used to calculate the allowable span lengths. The screening criteria allow small amplitudes of vortex-induced vibration due to wave and current loading. However, the induced pipe stress is very small and usually below the limit stress of a typical S-N curve. A simplified method was established to calculate the fatigue damage due to long-term current distribution. The long-term current statistics was assumed with a 3-parameter Weibull distribution. The fatigue damage was estimated for the span lengths obtained from the screening criteria for various conditions. Sample calculations show the effect of axial force for various boundary conditions.

  • PDF

Burst Pressure Evaluation for Through-Wall Cracked Tubes in the Steam Generator (관통균열이 존재하는 증기발생기 전열관의 파열압력 평가)

  • Kim, Hyun-Su;Kim, Jong-Sung;Jin, Tae-Eun;Kim, Hong-Deok;Chung, Han-Sup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.1006-1013
    • /
    • 2004
  • Operating experience of steam generators shows that the tubes are degraded by stress corrosion cracking, fretting wear and so on. These defected tubes could stay in service if it is proved that the tubes have sufficient structural margin to preclude the risk of tube bursting. This paper provides detailed plastic limit pressure solutions for through-wall cracks in the steam generator tubes. These are developed based on three dimensional(3D) finite element analyses assuming elastic-perfectly plastic material behavior. Both axial and circumferential through-wall cracks in free span and in u-bend regions are considered. The resulting limit pressure solutions are given in a polynomial form, and thus can be simply used in practical integrity assessment of the steam generator tubes.