• 제목/요약/키워드: span

검색결과 5,035건 처리시간 0.025초

단경간 폐복식 아치교의 축선에 관한 연구 (A Study on the Axis Line of Short Span Filled Spandrel Arch Bridge)

  • 구민세;황윤국;조현준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.95-100
    • /
    • 1990
  • The behavior of short span filled spandrel arch bridge of 10 and 21 m span with various axis line, rise and backill height were investigated under the design loads(self weight, earth pressure, temperature load, live load, etc). Even though the behaviors of arch were known as relatively complicated, the followings can be concluded within the limits of this study. The design value of arch bridge increase as the rise decreases, the effects of temperature load become dominant for the design of arch bridge, and governing design factors are occured at springing.

  • PDF

프리캐스트 세그먼트 거더의 비선형거동 특성에 관한 연구 (A Study on Nonlinear Behavior Characteristics of Precast Segmental Gider)

  • 홍성남;고병순;김광수;박선규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.89-92
    • /
    • 2004
  • Precast Segmental method was developed in germany 1950's. This method has been adoptted in long span girder mainly owing to easy construction effect. But, so far, The limit exists that this method is constructed in a portion of span and hard conveyance and foundation. This study was performed to analysis behavior difference of two rectangular section girder, spliced girder that was jointed 5-sliced 0.8m segment and monolithic girder that was produced in one body 4m span.

  • PDF

Involute Curve의 Biarc Curve Fitting에 관한 연구 (A study on the biarc curve fitting of involute curve)

  • 이춘만;이승훈;조승래
    • 한국정밀공학회지
    • /
    • 제13권12호
    • /
    • pp.78-85
    • /
    • 1996
  • The determination of the optimum biarc curve passing through a given set of points along involute curve is studied. The method adopted is that of finding the optimum no. of span and the optimum length of the span such that the error between the biarc curve and involute curve is minimum. Irregular curve span method is effectively used to describe the involute curve with reduced length of NC-Code.

  • PDF

Studies on the Development for Sustained Release Preparation (II):Preparation and Evaluation of Eudragit Microcapsules of Sodium Naproxen

  • Shin, Sang-Chul;Lee, Keong-Ran
    • Archives of Pharmacal Research
    • /
    • 제16권1호
    • /
    • pp.50-56
    • /
    • 1993
  • The microencapsulation of sodium naproxen with Eudragit. RS was studied by coacrtvation/phase separation process using Span 80 in mineral oil/acetone system. Various factors which affect the mciroencapsulation, e.g., stirring speed, and surfactant concentraction, Eudagit RS concentration and loading drug amounts were examined. For the evaluation of the prepared microcapsules, release rate, particle size distribution and surface appearance as well as in vivo test were carried out. The addition of n-hexane and freezing of microcapsules accelerated the hardening of microcapsules. The optimum concentration of Span 80 ti prepare the smallest microcapsules was the same value with the CMC of Span 80 in solvent system. When 1.5% (w/w) Span 80 was used, the smallest microcapsules were formed $(30.02\pm5.05\mu$ in diameter) belonging to the powder category showing smooth, round and uniform surface. The release of sodium naproxen was retarded by microencapsulation with Eudragit RS. The Eudragit RS microcapsules showed significantly increased AUC and MRT and deceased Cl/F in rabbits.

  • PDF

Axisymmetrical bending of single- and multi-span functionally graded hollow cylinders

  • Bian, Z.G.;Wang, Y.H.
    • Structural Engineering and Mechanics
    • /
    • 제45권3호
    • /
    • pp.355-371
    • /
    • 2013
  • Single- and multi-span orthotropic functionally graded hollow cylinders subjected to axisymmetrical bending are investigated on the basis of a unified shear deformable shell theory, in which the transverse displacement is expressed by means of a general shape function. To approach the through-thickness inhomogeneity of the hollow cylinder, a laminated model is employed. The shape function therefore shall be determined for each fictitious layer. To improve the computational efficiency, we resort to a transfer matrix method. Based on the principle of minimum potential energy, equilibrium equations are established, which are then solved analytically using the transfer matrix method for arbitrary boundary conditions. Numerical comparisons among a third-order shear deformable shell theory, an exact elastic theory and the present theory are provided for a simply supported hollow cylinder, from which the present theory turns out to be superior in stress estimation. Distributions of displacements and stresses in single- and three-span hollow cylinders with different boundary conditions are also illustrated in numerical examples.

Effect of shear wall location in rigid frame on earthquake response of roof structure

  • Ishikawa, Koichiro;Kawasaki, Yoshizo;Tagawa, Kengo
    • Structural Engineering and Mechanics
    • /
    • 제11권6호
    • /
    • pp.605-616
    • /
    • 2001
  • The purpose of this study is to investigate the effect of the shear wall location in rigid frames on the dynamic behavior of a roof structure due to vertical and horizontal earthquake motions. The study deals with a gabled long span beam supported by two story rigid frames with shear walls. The earthquake response analysis is carried out to study the responses of the roof: vibration mode, natural period, bending moment and horizontal shear force of the bearings. The study results in the following conclusions: First, a large horizontal stiffness difference between the side frames is caused by the shear wall location, which results in a large vertical vibration of the roof and a large shear force at the side bearings. Second, in this case, the seismic design method for ordinary buildings is not useful in determining the distribution of the static equivalent loads for the seismic design of this kind of long span structures.

Coupled buffeting response analysis of long-span bridges by the CQC approach

  • Ding, Quanshun;Chen, Airong;Xiang, Haifan
    • Structural Engineering and Mechanics
    • /
    • 제14권5호
    • /
    • pp.505-520
    • /
    • 2002
  • Based on the modal coordinates of the structure, a finite-element and CQC (complete quadratic combination) method for analyzing the coupled buffeting response of long-span bridges is presented. The formulation of nodal equivalent aerodynamic buffeting forces is derived based on a reasonable assumption. The power spectral density and variance of nodal displacements and elemental internal forces of the bridge structure are computed using the finite-element method and the random vibration theory. The method presented is very efficient and can consider the arbitrary spectrum and spatial coherence of natural winds and the multimode and intermode effects on the buffeting responses of bridge structures. A coupled buffeting analysis of the Jiangyin Yangtse River Suspension Bridge with 1385 in main span is performed as an example. The results analyzed show that the multimode and intermode effects on the buffeting response of the bridge deck are quite remarkable.

2경간 P.S. 연속합성보 교량의 설계에 관한 연구 (A Study on the Design of Two-Span Continuous P.S. Composite Bridges)

  • 구민세;신동기;이재혁
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.203-210
    • /
    • 1995
  • A construction method for continuous prestressed Composite Bridges(PCB's) is developed and successfully applied to the design of two-span continuous PCB's of five different span lengths. The construction of continuous PCB's goes through 17 different loading conditions. for each loading condition, the allowable stress design method is used to determine section properties. The analytical results of two-span continuous PCB's arc compared with those of simple PCB's. The comparison shows that the use of the proposed method can reduce 10-15 percents of the concrete section area and approximate 28 percents of the steel section area, as well as 5-8 percents of the girder height. The study indicates that the use of the proposed PCB's method can significantly reduce construction and maintenance costs of bridges.

  • PDF

A simplified method for determining the acceleration amplitudes of long-span floor system under walking/running loads

  • Cao, Liang;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • 제75권3호
    • /
    • pp.377-387
    • /
    • 2020
  • Modern long-span floor system typically possesses low damping and low natural frequency, presenting a potential vibration sensitivity problem induced by human activities. Field test and numerical analysis methods are available to study this kind of problems, but would be inconvenient for design engineers. This paper proposes a simplified method to determine the acceleration amplitudes of long-span floor system subjected to walking or running load, which can be carried out manually. To theoretically analyze the acceleration response, the floor system is simplified as an anisotropic rectangular plate and the mode decomposition method is used. To facilitate the calculation of acceleration amplitude aP, a coefficient αwmn or αRmn is introduced, with the former depending on the geometry and support condition of floor system and the latter on the contact duration tR and natural frequency. The proposed simplified method is easy for practical use and gives safe structural designs.

파괴지수분석에 의한 WUF-W 접합부의 연쇄붕괴저항 회전능력평가 (Progressive Collapse-Resistant Rotational Capacity Evaluation of WUF-W Connection by Fracture Index Analysis)

  • 김선웅
    • 한국지진공학회논문집
    • /
    • 제22권6호
    • /
    • pp.353-360
    • /
    • 2018
  • This paper is to investigate the micro-behavior of the double-span beams with WUF-W seismic connection under combined axial tension and moment and to propose the rational rotational capacity of it for progressive collapse-resistant analysis and design addressing the stress and strain transfer mechanism. To this end, the behavior of the double-span beams under the column missing event is first investigated using the advanced nonlinear finite element analysis. The characteristics of fracture indices of double-span beams with WUF-W connection under combined axial tension and flexural moment are addressed and then proposed the rational rotational capacity as the basic datum for the progressive collapse-resistant design and analysis. The distribution of fracture indices related to stress and strain for the double-span beams is investigated based on a material and geometric nonlinear finite element analysis. Furthermore, the micro-behavior for earthquake and progressive collapse is explicitly different.