• Title/Summary/Keyword: spam blog detection

Search Result 5, Processing Time 0.027 seconds

Detecting Spam Data for Securing the Reliability of Text Analysis (텍스트 분석의 신뢰성 확보를 위한 스팸 데이터 식별 방안)

  • Hyun, Yoonjin;Kim, Namgyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.493-504
    • /
    • 2017
  • Recently, tremendous amounts of unstructured text data that is distributed through news, blogs, and social media has gained much attention from many researchers and practitioners as this data contains abundant information about various consumers' opinions. However, as the usefulness of text data is increasing, more and more attempts to gain profits by distorting text data maliciously or nonmaliciously are also increasing. This increase in spam text data not only burdens users who want to obtain useful information with a large amount of inappropriate information, but also damages the reliability of information and information providers. Therefore, efforts must be made to improve the reliability of information and the quality of analysis results by detecting and removing spam data in advance. For this purpose, many studies to detect spam have been actively conducted in areas such as opinion spam detection, spam e-mail detection, and web spam detection. In this study, we introduce core concepts and current research trends of spam detection and propose a methodology to detect the spam tag of a blog as one of the challenging attempts to improve the reliability of blog information.

Splog Detection Using Post Structure Similarity and Daily Posting Count (포스트의 구조 유사성과 일일 발행수를 이용한 스플로그 탐지)

  • Beak, Jee-Hyun;Cho, Jung-Sik;Kim, Sung-Kwon
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.2
    • /
    • pp.137-147
    • /
    • 2010
  • A blog is a website, usually maintained by an individual, with regular entries of commentary, descriptions of events, or other material such as graphics or video. Entries are commonly displayed in reverse chronological order. Blog search engines, like web search engines, seek information for searchers on blogs. Blog search engines sometimes output unsatisfactory results, mainly due to spam blogs or splogs. Splogs are blogs hosting spam posts, plagiarized or auto-generated contents for the sole purpose of hosting advertizements or raising the search rankings of target sites. This thesis focuses on splog detection. This thesis proposes a new splog detection method, which is based on blog post structure similarity and posting count per day. Experiments based on methods proposed a day show excellent result on splog detection tasks with over 90% accuracy.

A Splog Detection System Using Support Vector Systems (지지벡터기계를 이용한 스팸 블로그(Splog) 판별 시스템)

  • Lee, Song-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.163-168
    • /
    • 2011
  • Blogs are an easy way to publish information, engage in discussions, and form communities on the Internet. Recently, there are several varieties of spam blog whose purpose is to host ads or raise the PageRank of target sites. Our purpose is to develope the system which detects these spam blogs (splogs) automatically among blogs on Web environment. After removing HTML of blogs, they are tagged by part of speech(POS) tagger. Words and their POS tags information is used as a feature type. Among features, we select useful features with X2 statistics and train the SVM with the selected features. Our system acquired 90.5% of F1 measure with SPLOG data set.

A Study on Spam Document Classification Method using Characteristics of Keyword Repetition (단어 반복 특징을 이용한 스팸 문서 분류 방법에 관한 연구)

  • Lee, Seong-Jin;Baik, Jong-Bum;Han, Chung-Seok;Lee, Soo-Won
    • The KIPS Transactions:PartB
    • /
    • v.18B no.5
    • /
    • pp.315-324
    • /
    • 2011
  • In Web environment, a flood of spam causes serious social problems such as personal information leak, monetary loss from fishing and distribution of harmful contents. Moreover, types and techniques of spam distribution which must be controlled are varying as days go by. The learning based spam classification method using Bag-of-Words model is the most widely used method until now. However, this method is vulnerable to anti-spam avoidance techniques, which recent spams commonly have, because it classifies spam documents utilizing only keyword occurrence information from classification model training process. In this paper, we propose a spam document detection method using a characteristic of repeating words occurring in spam documents as a solution of anti-spam avoidance techniques. Recently, most spam documents have a trend of repeating key phrases that are designed to spread, and this trend can be used as a measure in classifying spam documents. In this paper, we define six variables, which represent a characteristic of word repetition, and use those variables as a feature set for constructing a classification model. The effectiveness of proposed method is evaluated by an experiment with blog posts and E-mail data. The result of experiment shows that the proposed method outperforms other approaches.

A Splog Detection System Using Support Vector Machines and $x^2$ Statistics (지지벡터기계와 카이제곱 통계량을 이용한 스팸 블로그(Splog) 판별 시스템)

  • Lee, Song-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.905-908
    • /
    • 2010
  • Our purpose is to develope the system which detects splogs automatically among blogs on Web environment. After removing HTML of blogs, they are tagged by part of speech(POS) tagger. Words and their POS tags information is used as a feature type. Among features, we select useful features with $x^2$ statistics and train the SVM with the selected features. Our system acquired 90.5% of F1 measure with SPLOG data set.

  • PDF