• Title/Summary/Keyword: spacing behavior

Search Result 448, Processing Time 0.023 seconds

Case study of Cut-slop failure caused by rock anisotropy (암석의 이방성에 기인한 절토사면 붕괴 사례연구)

  • Jung, Young-Kook;Chang, Buhm-Soo;Shin, Chang-Gun;Lee, Yeon-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.831-837
    • /
    • 2005
  • In this study, a computer program to predict the behavior of laterally loaded single pile and pile groups was developed by using a beam-column analysis in which the soils are modeled as nonlinear springs by a family of p-y curves for subgrade modulus. The special attention was given to the lateral displacement of a single pile and pile groups due to the soil condition and the cap rigidity. The analysis considering group effect was carried out for $2\;{\times}\;2\;and\;3\;{\times}\;3$ pile groups with the pile spacing 3.0B, 4.0B and 5.0B. Based on the results obtained, it is found that the overall distributions of deflection, slope, moment, and shear force in a single pile give a reasonable results irrespective of cap connectivity conditions. It is also found that even though there are some deviations in deflection prediction compared with the observed ones, the prediction by present analysis simulates much better the general trend observed by the centrifuge tests than the numerical solution predicted by PIGLET.

  • PDF

A study on the Solute Redistribution of Cu-Sn(P) Alloy (Cu-Sn(P) 합금(合金)의 용질재분배(溶質再分配)에 관(關)한 연구(硏究))

  • Shur, Su-Jeong;Cho, Soon-Hyunh;Kim, Ik-Soo;Yoon, Eui-Pak;Choi, Jeong-Cheol
    • Journal of Korea Foundry Society
    • /
    • v.10 no.3
    • /
    • pp.219-224
    • /
    • 1990
  • In this, we have investigated the solute behavior in front of solid-liquid interface according to the change of the cooling rate in bronze alloy and phosphor bronze alloy. The conclusive summary is as follows: 1) The secondary dendrite arm spacing was decreased with increasing the cooling rate. 2) The minimum solute concentration happened to along centerline of primary arm, and the maximum solute concentration was found at the boundary of arm or between the arms the minimum solute concentration was increased with the cooling rate. 3) Segregation Index S was decreased with increasing the cooling rate and content of P. 4) The degree of the microsegregation was decreased with increasing the cooling rate. The effective distribution coefficient, Ke was increased with addition of P in Cu-Sn.

  • PDF

Elastic Behavior Characteristics of GFRP Pipes Reinforced Ribs (리브로 보강된 GFRP 관로의 탄성 좌굴거동 특성)

  • Han, Taek Hee;Seo, Joo Hyung;Youm, Eung Jun;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.737-746
    • /
    • 2006
  • The elastic buckling strength of a Glass Fiber Reinforced Plastic (GFRP) pipe reinforced with ribs was evaluated. The height and thickness of a rib and the spacing between two adjacent ribs were considered as factors affecting the buckling strength of the pipe. And also, the ratio of the longitudinal stiffness and transverse stiffness was considered as the parameter affecting the buckling strength as the GFRP is orthotropic material. Buckling strengths of various GFRP pipe models with different shapes and stiffness ratios were evaluated by FE analyses and a formula to estimate the elastic buckling strength of a rib-reinforced pipe made of orthotropic material was suggested from the regression with the results from the FE analysis. Analytical results show that a rib-reinforced pipe has a buckling strength superior to a general flat pipe and the suggested formula estimates accurate buckling strength of the rib-reinforced pipe.

Strengthening of hollow brick infill walls with expanded steel plates

  • Cumhur, Alper;Altundal, Adil;Aykac, Sabahattin;Aykac, Bengi
    • Earthquakes and Structures
    • /
    • v.11 no.5
    • /
    • pp.887-904
    • /
    • 2016
  • An efficient, economical and practical strengthening method for hollow brick infill walls was proposed and investigated in the present study, experimentally and numerically. This method aims at increasing the overall lateral strength and stiffness of the structure by increasing the contribution of the infill walls and providing the non-bearing components of the structure with the capability of absorbing earthquake-induced energy to minimize structural damage during seismic excitations. A total of eleven full-scale infill walls strengthened with expanded mild steel plates were tested under diagonal monotonic loading to simulate the loading condition of the non-bearing walls during an earthquake. The contact surface between the plates and the wall was increased with the help of plaster. Thickness of the plates bonded to both faces of the wall and the spacing of the bolts were adopted as test parameters. The experiments indicated that the plates were able to carry a major portion of the tensile stresses induced by the diagonal loads and provided the walls walls with a considerable confining effect. The composite action attained by the plates and the wall until yielding of the bolts increased the load capacities, rigidities, ductilities and energy-absorption capacities of the walls, considerably.

A Study on Distinct Element Modelling of Dilatant Rock Joints (팽창성 암석절리의 개별요소 모델링에 관한 연구)

  • 장석부;문현구
    • Tunnel and Underground Space
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • The behavior of a jointed rock mass depends mainly on the geometrical and mechanical properties of joints. The failure mode of a rock mass and kinematics of rock blocks are governed by the orientation, spacing, and persistence of joints. The mechanical properties such as dilation angle, shear strength, maximum closure, strength of asperities and friction coeffiient play important roles on the stability and deformation of the rock mass. The normal and shear behaviour of a joint are coupled due to dilation, and the joint deformation depends also on the boundary conditions such as stiffness conditons. In this paper, the joint constitutive law including the dilatant behaviour of a joint is numerically modelled using the edge-to-edge contact logic in distinct element method. Also, presented is the method to quantify the input parameters used in the joint law. The results from uniaxial compression and direct shear tests using the numeical model of the single joint were compared to the analytic results from them. The boundary effect on the behaviour of a joint is verified by comparing the results of direct shear test under constant stress boundary condition with those under constant stiffness boundary condition. The numerical model developed is applied to a complex jointed rock mass to examine its performance and to evaluate the effect of joint dilation on tunnel stability.

  • PDF

The Method of Estimating Group Effect with Small Pull-out Tests of Screw Anchors (나선형 앵커의 실내인발시험을 이용한 무리효과 평가기법)

  • Park Si-Sam;Lee Hyung-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.10
    • /
    • pp.123-131
    • /
    • 2005
  • In the present study, laboratory pull-out tests with screw anchors are carried out to investigate behavior characteristics of the anchors used in foundation system of underground structures which are applied to uplifting seepage forces. Small scaled pull-out tests in sand under saturated condition and dry condition were carried out. For estimating the group effects of the anchors, the upward displacement and the pullout load varied with spacing of the anchor were observed. The test results were compared with theoretical equation for the ultimate pull-out force. Also, the result of tests can be used to the finite element analysis program, $PENTAGON^{2D}$.

Shielding effects and buckling of steel tanks in tandem arrays under wind pressures

  • Portela, Genock;Godoy, Luis A.
    • Wind and Structures
    • /
    • v.8 no.5
    • /
    • pp.325-342
    • /
    • 2005
  • This paper deals with the buckling behavior of thin-walled aboveground tanks under wind load. In order to do that, the wind pressures are obtained by means of wind-tunnel experiments, while the structural non linear response is computed by means of a finite element discretization of the tank. Wind-tunnel models were constructed and tested to evaluate group effects in tandem configurations, i.e. one or two tanks shielding an instrumented tank. Pressures on the roof and on the cylindrical part were measured by pressure taps. The geometry of the target tank is similar in relative dimensions to typical tanks found in oil storage facilities, and several group configurations were tested with blocking tanks of different sizes and different separation between the target tank and those blocking it. The experimental results show changes in the pressure distributions around the circumference of the tank for half diameter spacing, with respect to an isolated tank with similar dimensions. Moreover, when the front tank of the tandem array has a height smaller than the target tank, increments in the windward pressures were measured. From the computational analysis, it seems that the additional stiffness provided by the roof prevents reductions in the buckling load for cases even when increments in pressures develop in the top region of the cylinder.

A Study for Web Frame Design on Engine Room Structure of Ship (선박기관실 구조의 특설늑골 설계에 대한 연구)

  • J.J. Park;B.S. Kang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.155-160
    • /
    • 1993
  • A design method for web frame scantling on engine room structures was described. The parameters determining the scantling of web frame were studied on the basis of the empirical ship's data. It is found that the parameters determining the scanting of web frame consist of tween deck height, main engine and propeller excitation frequency, scantling draft, web frame spacing, the number of decks and main engine BHP etc. And a formula proposed by empirical ship's data was established in view points of static and dynamic structural behavior. In this study, it can be shown that at initial design stage, a method for web frame scantling of engine room structure is provided as very practical design processes.

  • PDF

Effects of the Type of Martensite on Fatigue Limit of Ferrite-Martensitic Steel (페라이트-마르텐사이트 복합 조직강의 피로한도에 미치는 마르텐사이트 조직형태의 영향)

  • Kim, Min-Gun;Ji, Jueng-Keun
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.87-94
    • /
    • 2000
  • A study has been made on the behavior of microscopic fatigue crack growth at the stress level of the fatigue limit with ferrite-martensitic structures. For the above purpose, two types of the microstructures were prepared ; one is the microstructure having the ferrite encapsulating the islands of second phase martensite(FEM), the other is the microstructure with the martensite encapsulating the islands of ferrite(MEF). It has been pointed out that the fatigue limits of these microstructures are related to the critical stress at which the microcrack in the ferrite proceeds to the martensite. The high fatigue limit might be excepted for the MEF microstructure in which the critical crack length would be restricted within the second phase spacing in contrast with the FEM microstruture. However, the fatigue tests shows that no appreciable difference of the fatigue limits among them were recognized. Also, it turned out from the metallographic observations that the micro crack path is very much affected by the microstructures, so that the microcracks grow according to the 3-dimentional situation of its microstructures.

  • PDF

Analysis of Behaviour of Earth Retaining Structure using Cement-mixing Method (교반혼합체로 보강된 흙막이 벽체의 거동 분석)

  • Kim, Young-Seok;Cho, Yong-Sang;Kang, In-Cheol;Kim, In-Sup
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1294-1300
    • /
    • 2009
  • Recently, excavations in highly congest urban area have been increased. For the excavations conducted in extremely narrow spaces, we have been developing a novel soil reinforcement system of temporary retaining walls by using deep cement mixing method. The developing method installs largerdiameter ($\Phi$=300~500mm) and shorter reinforcement blocks than previous reinforcement system for mobilizing friction with soils, therefore it has advantages of not only shortening the length of reinforcement system but also reducing the amount of reinforcement. In this study, we performed a numerical analysis of the new reinforcement system by using a commercial finite element program, and evaluated the behavior of the reinforced retaining wall system under various conditions of the length, the diameter, the spacing, and the angle of the reinforcement system.

  • PDF