• Title/Summary/Keyword: spacing behavior

Search Result 444, Processing Time 0.031 seconds

Effect of Joint Spacing on Early-Age Behavior of jointed Concrete Pavement (줄눈콘크리트 포장의 줄눈간격에 따른 초기거동 연구)

  • Yoon, Chang-Ho;Lee, Jae-Hoon;Kim, Hyung-Bae;Lee, Seung-Woo
    • International Journal of Highway Engineering
    • /
    • v.9 no.3
    • /
    • pp.101-110
    • /
    • 2007
  • Joint Spacing of Jointed Concrete Pavement has been uniformly designed and constructed as six-meter in Korea. However, engineering backgrounds to show the appropriateness of six-meter Joint Spacing has not been provided. In the on-going reseach of the development of Korea Pavement Reseach Program(KPRP), the optimum Joint Spacing is suggested as 6 to 8 meters according to the regional climatic conditions based on the mechanical-empirical analysis of short-term and long-term pavement distress. This study is a part of the investigation on the adequateness of Joint Spacing design specification suggested in KPRP. Joint Spacing was design and constructed as seven-meter Joint Spacing suggested as design specification in Korea Reseach Program(KPRP) and monitored the Load Transfer Efficiency(LTE), Random crack and compared with those of adjacent $6{\sim}7$ meter Joint Spacing concrete section.

  • PDF

Effect of Group Spacing of Energy Piles on Thermal Analysis (말뚝 간격에 따른 에너지 파일의 열적 거동분석)

  • Min, Hye-Sun;Yun, Tae-Sup;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.8
    • /
    • pp.39-50
    • /
    • 2011
  • This study was conducted to analyze the thermal behavior of a PHC energy pi1e system in saturated soil conditions, various seasonal and flow-speed conditions during 100 hours of operation through numerical analysis. The examination was a1so conducted with a single pile as well as with group pils. For the operation of 100 hours, the average heat exchange rate appeared 55 W/m, 47 W/m during winter and summer respectively. An increase in flow-speed was associated with a rise in the heat exchange rate. And thermal behavior analysis results during winter season show that thermal efficiency has increased when there are more free thermal planes. For the operation in group pile as 3D and 5D pile spacing (D: pile diameter), average heat exchange rate increased as pile spacing grows. Compared with the heat exchange rate of single pile, thermal exchange efficiency of group pile decreased by 89% (for 3D spacing) and 93% (for 5D spacing).

Analytical Study for Design of Shape and Arrangement Spacing of Studs in Steel Plate Concrete(SC) Wall subjected to Shear and Axial Forces (전단력과 축하중을 받는 강판 콘크리트(SC) 벽체에서 스터드의 형상과 배치간격의 설계를 위한 해석적 연구)

  • Cho, Sung-Gook;Lim, Jin-Sun;Jeong, Young-Do;Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.67-76
    • /
    • 2014
  • In this study, the behavior of Steel Plate Concrete (SC) walls subjected to shear and axial forces to investigate the effects of shape and arrangement spacing of studs on the design of SC walls was analytically reviewed. For this purpose, 9 cases of finite element analyses considering the different shape and spacing of studs in SC wall were performed. The results showed that the steel plate was yielded at the lower load than the second yielding shear force of the design skeleton curve when the spacing of stud is excessively far from each other. It is also found that the shape of the stud did not affect the shear behavior of SC wall but, the spacing influenced to its composite action. In this study, it was also proven that the inclined shaped stud resists more effectively to the bucking load than the general shaped stud in SC wall.

Corrosion effects on tension stiffening behavior of reinforced concrete

  • Shayanfar, M.A.;Ghalehnovi, M.;Safiey, A.
    • Computers and Concrete
    • /
    • v.4 no.5
    • /
    • pp.403-424
    • /
    • 2007
  • The investigation of corrosion effects on the tensile behavior of reinforced concrete (RC) members is very important in region prone to high corrosion conditions. In this article, an experimental study concerning corrosion effects on tensile behavior of RC members is presented. For this purpose, a comprehensive experimental program including 58 cylindrical reinforced concrete specimens under various levels of corrosion is conducted. Some of the specimens (44) are located in large tub containing water and salt (5% salt solution); an electrical supplier has been utilized for the accelerated corrosion program. Afterwards, the tensile behavior of the specimens was studied by means of the direct tension tests. For each specimen, the tension stiffening curve is plotted, and their behavior at various load levels is investigated. Average crack spacing, loss of cross-section area due to corrosion, the concrete contribution to the tensile response for different strain levels, and maximum bond stress developed at each corrosion level are studied, and their appropriate relationships are proposed. The main parameters considered in this investigation are: degree of corrosion ($C_w$), reinforcement diameter (d), reinforcement ratio (${\rho}$), clear concrete cover (c), ratio of clear concrete cover to rebar diameter (c/d), and ratio of rebar diameter to reinforcement percentage ($d/{\rho}$).

A Study on the Experiment of Flexural Behavior of Composite Beam with Steel Fiber Reinforced UHPC and Inverted-T Steel Considering Compressive Strength Level (압축강도 수준을 고려한 강섬유 보강 UHPC와 역T형 강재 합성보의 휨거동 실험 연구)

  • Yoo, Sung-Won;Suh, Jeong-In
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.677-685
    • /
    • 2015
  • In a will to subdue the brittleness as well as the low tensile and flexural strengths of ordinary concrete, researches are being actively watched worldwide on steel fiber-reinforced Ultra High Performance Concrete (UHPC) obtained by admixing steel fibers in ultra high strength concrete. For the purpose of maximizing advantage of UHPC, this study removes the upper flange of the steel girder to apply an inverted T-shape girder for the formation of the composite beam. This paper intends to evaluate the behavior of the shear connectors and the flexural characteristics of the composite beam made of the inverted T-shape girder and UHPC slab using 16 specimens considering the compressive strength of concrete, the mixing ratio of steel fiber, the spacing of shear connectors and the thickness of the slab as variables. In view of the test results, it seemed that the appropriate stud spacing should range between 100 mm and 2 or 4 times the thickness of the slab. Moreover, the relative displacement observed in the specimens showed that ductile behavior was secured to a certain extent with reference to the criteria for ductile behavior suggested in Eurocode-4. The specimens with large stud spacing exhibited larger values than given by the design formula and revealed that the shear connectors developed larger ultimate strength than predicted owing to the action of UHPC and steel after non-composite behavior. Besides, the specimens with narrow stud spacing failed suddenly through compression at the upper chord of UHPC before reaching the full capacity of the shear connectors.

Cyclic flexural behavior of RC members reinforced with Forta-Ferro and Polyvinyl Alcohol fibers

  • Hamed Rajabzadeh Gatabi;Habib Akbarzadeh Bengar;Murude Celikag
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.333-346
    • /
    • 2023
  • This paper presents findings from an experimental study that was focused on evaluating the use of Forta-Ferro (FF) and Polyvinyl Alcohol (PVA) fibers on the response of moderate and special ductility beams under load cycles. For this reason, eight full-scale specimens, identical in geometry, were subjected to gradual cyclic loading. The specimens included two plain concrete beams with medium and special ductility, three beams with medium ductility and stirrup spacing of one-quarter the effective depth (d/4) and three beams with special ductility, and stirrup spacing of one-half the effective depth (d/2), strengthened with FF and PVA fibers separately. The use of fibers was aimed at reducing the amount of shear reinforcement in flexural members. Here, the variation of parameters including the maximum strength, ultimate strength, stiffness, ductility, damage index, energy dissipation, and equivalent damping was studied. Utilizing FF and PVA fibers improved the performance in beams with moderate ductility when compared to those beams with special ductility. Therefore, in special ductility beams, fibers can be used instead of crossties and in moderate ductility beams, fibers can be added to reduce the ratio of shear reinforcement. Furthermore, increasing the stirrup spacing in the moderate ductility beams from d/4 to d/2 and adding 0.6% FF or 1.5% PVA fibers resulted in behavior similar to those of the moderate ductility beam.

Experimental and numerical study on shear studs connecting steel girder and precast concrete deck

  • Xia, Ye;Chen, Limu;Ma, Haiying;Su, Dan
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.433-444
    • /
    • 2019
  • Shear studs are often used to connect steel girders and concrete deck to form a composite bridge system. The application of precast concrete deck to steel-concrete composite bridges can improve the strength of decks and reduce the shrinkage and creep effect on the long-term behavior of structures. How to ensure the connection between steel girders and concrete deck directly influences the composite behavior between steel girder and precast concrete deck as well as the behavior of the structure system. Compared with traditional multi-I girder systems, a twin-I girder composite bridge system is more simplified but may lead to additional requirements on the shear studs connecting steel girders and decks due to the larger girder spacing. Up to date, only very limited quantity of researches has been conducted regarding the behavior of shear studs on twin-I girder bridge systems. One convenient way for steel composite bridge system is to cast concrete deck in place with shear studs uniformly-distributed along the span direction. For steel composite bridge system using precast concrete deck, voids are included in the precast concrete deck segments, and they are casted with cast-in-place concrete after the concrete segments are erected. In this paper, several sets of push-out tests are conducted, which are used to investigate the heavier of shear studs within the voids in the precast concrete deck. The test data are analyzed and compared with those from finite element models. A simplified shear stud model is proposed using a beam element instead of solid elements. It is used in the finite element model analyses of the twin-I girder composite bridge system to relieve the computational efforts of the shear studs. Additionally, a parametric study is developed to find the effects of void size, void spacing, and shear stud diameter and spacing. Finally, the recommendations are given for the design of precast deck using void for twin I-girder bridge systems.

Shear Resistance of Concrete Circular columns Due to Arch action : Experimental Study (아취작용에 의한 콘크리트 원형기둥의 전단저항;실험적 고찰)

  • 김장훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.178-185
    • /
    • 1999
  • Six of scaled concrete circular columns were experimentally investigated for the contribution of arch action to the column lateral resistance. For this the specimens with the variation of tranverse hoop steel spacing were tested in absence of axial loading All specimens showed the flexure governing behavior pattern irrelevant to transverse hoop spacing. This indicates that the role of arch action should be understood as the intermediate mechanism causing the interaction between shear and flexural mechanisms A simple truss model was proposed to qualitatively explain this notation but further study is needed to advance its application to general columns.

  • PDF

Crack Spacing in RC Tension Members Considering Cover Thickness and Concrete Compressive Strength (피복두께와 콘크리트 강도를 고려한 철근콘크리트 인장부재의 균열간격)

  • Kim, Woo;Lee, Ki-Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.193-202
    • /
    • 2018
  • This paper proposed a crack spacing calculation formulation which is an important parameter for calculating the crack width, that is the main factor for verification of serviceability limit states and durability performance evaluation of reinforced concrete members. The basic equation of average crack spacing is derived by considering the bond characteristics which is the governing equation for the analysis of cracking behavior in reinforced concrete members. In order to consider the effect of the cover thickness and concrete compressive strength, the crack spacing measured in 124 direct tensile tests performed by several researchers was analyzed and each coefficient was proposed. And, correlation analysis was performed from 80 specimen data where the maximum and average crack spacing were simultaneously measured, and a correlation coefficient that can easily predict the maximum crack spacing from the average crack spacing was proposed. The results of the proposed average crack spacing equation and maximum crack spacing correlation were compared with those current design code specification. The comparisons of proposed equations and the Korean design codes show that the proposed formulation for the average crack spacing and the maximum crack spacing improves the accuracy and reliability of prediction compared to the corresponding provisions of the Korean Concrete Structural Design Code and Korean Highway Bridge Design Code (Limit States Design).

Low velocity impact behavior of shear deficient RC beam strengthened with CFRP strips

  • Anil, Ozgur;Yilmaz, Tolga
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.417-439
    • /
    • 2015
  • Many methods are developed for strengthening of reinforced concrete structural members against the effects of shear. One of the commonly used methods in recent years is turned out to be bonding of fiber reinforced polymers (FRP). Impact loading is one of the important external effects on the reinforced concrete structural members during service period among the others. The determination of magnitude, the excitation time, deformations and stress due to impact loadings are complicated and rarely known. In recent year impact behavior of reinforced concrete members have been researched with experimental studies by using drop-weight method and numerical simulations are done by using finite element method. However the studies on the strengthening of structural members against impact loading are very seldom in the literature. For this reason, in this study impact behavior of shear deficient reinforced concrete beams that are strengthened with carbon fiber reinforced polymers (CFRP) strips are investigated experimentally. Compressive strength of concrete, CFRP strips spacing and impact velocities are taken as the variables in this experimental study. The acceleration due to impact loading is measured from the specimens, while velocities and displacements are calculated from these measured accelerations. RC beams are modeled with ANSYS software. Experimental result and simulations result are compared. Experimental result showed that impact behaviors of shear deficient RC beams are positively affected from the strengthening with CFRP strip. The decrease in the spacing of CFRP strips reduced the acceleration, velocity and displacement values measured from the test specimens.