• Title/Summary/Keyword: spacer layer

Search Result 75, Processing Time 0.04 seconds

Nonlinear Dynamic Buckling Behavior of a Partial Spacer Grid Assembly

  • Yoon, Kyung-Ho;Kang, Heung-Seok;Kim, Hyung-Kyu;Song, Kee-Nam;Jung, Yeon-Ho
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.93-101
    • /
    • 2001
  • The spacer grid is one of the main structural components in the fuel assembly, which supports the fuel rods, guides cooling water, and protects the system from an external impact load, such as earthquakes. Therefore, the mechanical and structural properties of the spacer grids must be extensively examined while designing them. In this paper, a numerical method for predicting the buckling strength of spacer grids is presented. Numerical analyses on the buckling behavior of the spacer grids are performed for a various array of sizes of the grids considering that the spacer grid is an assembled structure with thin-walled plates and imposing proper boundary conditions by nonlinear dynamic finite element method using ABAQUS/Explicit. Buckling tests on several numbers of specimens of the spacer grid were also carried out in order to compare the results between the test and the simulation result. The drop test is accomplished by dropping a carriage on the specimen at a pre-determined position. From this test, the specimens are buckled only at the uppermost and the lowermost layer among the multi-cells, which is similar to the local buckling at the weakest point of the grid structure. The simulated results also similarly predicted the local buckling phenomena and were found to give good correspondence with the experimental values for the thin-walled grid structures.

  • PDF

Calculation of Electron Density and Electronic States in n-AlGaAs/GaAs Heterointerface (수치해석법에 의한 n-AlGaAs/GaAs 이종접합에서의 전자밀도와 전자 상태 계산)

  • Kho, Jae-Hong;Kim, Choong-won;Park, Seong-Ho;Han, Baik-Hyung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.10
    • /
    • pp.1202-1208
    • /
    • 1988
  • The electron density and electronic states in n- AlGaAs/GaAs heterointerface are calculated by using classical- and quantum-mechanics, respectively. We examine the effects of spacer layer thickness and doping concentration in AlGaAs layer on 2DEG density. Also, the dependences of electronic states of 2DEG upon temperature and acceptor concentration in GaAs layer are investigated.

  • PDF

Electronic Structures and Magnetic Properties of Fe/Si/Fe Trilayer

  • Park, Jin-Ho;Youn, Suk-Ju;Min, Byung-Il;Yi, Jae-Yel
    • Journal of Magnetics
    • /
    • v.1 no.1
    • /
    • pp.4-8
    • /
    • 1996
  • Employing the LMTO band method, we have studied electronic and magnetic properties of Fe/Si/Fe trilayer in which the z-direction is chosen to be (111) direction of FeSi with B2 phase, We have also determined electronic structure of bulk FeSi, as a reference material. The ground state of FeSi is paramagnetic insulator with a band gap of 0.05 eV. Band structures of Fe/Si/Fe with varying the thickness of the spacer layer reveal that the spacer layer is metallic, and the states along the growth direction do not disperse much reflecting a two-dimensional nature. Magnetic moment of Fe atom in the interfacial layer of Fe/Si/Fe is reduced a lot as compared to the bulk value, suggesting a strong hybridization between Fe and Si states. The geometry of the Fermi surface indicates that the magnetic coupling period of ~8ML (monolayers) in Fe/Si/Fe is explained with a short Fermi wave vector of bcc Si.

  • PDF

Structure Design of Fall Impact Protection Pad Using 3D Printing Technology and Comparison of Characteristics According to Filament Material (3D 프린팅 기술을 활용한 낙상충격 보호패드 구조설계 및 필라멘트 소재에 따른 특성 비교)

  • Park, Jung Hyun;Jung, Hee-Kyeong;Lee, Jeong Ran
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.5
    • /
    • pp.939-949
    • /
    • 2017
  • This study uses 3D printing technology to design and fabricate a fall impact protection pad with a spacer fabric structure. The design of the pads consists of hexagonal three-dimensional units connected in a honey-comb shape; in addition, the unit consists of a surface layer and a spacer layer. Protect pads were designed as either a hexagonal type or diamond type according to the surface layer structure; subsequently, a spacer filament was also designed as the most basic I-shape type. Designed pads were printed using four types of flexible filaments to select suitable material for a fall impact protection pad. Impact protection performance and bending stiffness were evaluated for the eight type of pad outputs. As a result of the impact protection performance evaluation, when the force of 6,500N was applied, the force passed through the pad was in the range of 1,370-2,132N. FlexSolid$^{(R)}$ and Skinflex$^{TM}$ showed good protection performance and cubicon flexible filament showed the lowest protection. NinjaFlex$^{(R)}$ was found to be the most flexible in the bending stiffness evaluation.

Electrical Characteristics of $\delta$-doped SiGe p-channel MESFET ($\delta$ 도핑된 SiGe p-채널 MESFET의 특성 분석)

  • 이관흠;이찬호
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.541-544
    • /
    • 1998
  • A SiGe p-channel MESFET using $\delta-doped$ layers is designed and the considerable enhancement of the current driving capability of the device is observed from the result of simulation. The channel consists of double $\delta-doped$ layers separated by a low-doped spacer which consists of Si and SiGe. A quantum well is formed in the valence band of the Si/SiGe heterojunction and much more holes are accumulated in the SiGe spacer than those in the Si spacer. The saturation current is enhanced by the contribution of the holes inthe spacer. Among the design parameters that affect the performance of the device, the thickness of the SiGe layer and the Ge composition are studied. The thickness of $0~300\AA$ and the Ge composition of 0~30% are investigated, and the saturation current is observed to be increased by 45% compared with a double $\delta-doped$ Si p-channel MESFET.

  • PDF

Electrical insulation characteristics with simulated electrode system of HTS (HTS pancake 코일을 모의한 전극계에서의 전기절연 특성)

  • Joung, Jong-Man;Baek, Seung-Myeong;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.58-63
    • /
    • 2002
  • For the experiment the four types of spacer were distinguished by arrangement. The flashover characteristic on each types of spacer was investigated and the flashover phenomena were observed to understand breakdown mechanism in liquid nitrogen($LN_{2}$). The spacer should be placed interior coil as an insulator, a cooling channel and s supporter of structures. The simulated electrode used in the experiment was made from five turns of HTS tape. Experimental results revealed that multi-layer and barrier effects did work well in Air but did not in $LN_{2}$. These result suggested that the flashover in LN2 caused by the bubbles due to partial discharge at micro gap, g. The flashover characteristics decreased to 70% when g is 0.2 mm. The degradation was improved by even treatment on surface of coil electrode.

  • PDF

The Spacer Thickness Effects on the Electroluminescent Characteristics of Hybrid White Organic Light-emitting Diodes

  • Seo, Ji-Hoon;Park, Jung-Sun;Seo, Bo-Min;Kim, Young-Kwan;Lee, Kum-Hee;Yoon, Seung-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.208-211
    • /
    • 2009
  • The authors have demonstrated the various characteristics of hybrid white organic light-emitting diodes (HWOLED) using fluorescent blue and phosphorescent red emitters. We also demonstrated that two devices showed different characteristics in accordance with thickness of the 4,4′-N,N′-dicarbazole-biphenyl (CBP) spacer (CS) inserted between the blue and the red emitting layer. It was found that the device with a CS thickness of 70 $\AA$ showed a current efficiency 2.5 times higher than that of the control device with a CS thickness of 30 $\AA$ by preventing the triplet Dexter energy transfer from the red to the blue emitting layer. The HWOLED with the CS thickness of 70 $\AA$ exhibited a maximum luminance of 24500 cd/$m^2$, a maximum current efficiency of 42.9 cd/A, a power efficiency of 37.5 lm/W, and Commission Internationale de I'Eclairage coordinates of (0.37, 0.42).

Dielectric composition of the double pancake coil interior (Double pancake 코일 내부의 절연구성 연구)

  • Joung, Jong-Man;Baek, Sung-Myeong;Kwak, Dong-Sun;Lee, Joung-Won;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.210-213
    • /
    • 2002
  • For insulation design of the superconducting transformer, many types of insulation tests should be carried out. To clarify the components of insulation for superconducting transformer, there are main four parts as 1ike that turn-to-turn interior of each primary and secondary windings, layer-to-layer between primary and secondary windings, and winding to grounded structures. The insulation components should meet the required withstand voltage of the system and enough safety factors must included. As the fundamental insulation characteristics, we tested surface flashover voltage of spacer that would place between the coils and would take the role of both cooling duct and insulator. The structure of spacer in practice vary depending on coil type, in this work we considered double pancake coil for the superconducting transformer. In this study we tested flashover voltages of several arrangement of spacer.

  • PDF

Interlayer Coupling of CoFe/Cu/NiFe Trilayer Films

  • Baek, Jong-Sung;Lim, Woo-Woung;Lee, Soo-Hyung;Kim, Mee-Yang;Rhee, Jang-Roh
    • Journal of Magnetics
    • /
    • v.5 no.4
    • /
    • pp.139-142
    • /
    • 2000
  • The interlayer coupling between adjacent ferromagnetic layers was examined for CoFe/Cu/NiFe trilayer systems. A series of films of CoFe (20 nm)/Cu($t_{cu}$)/NiFe (20 nm) trilayers with Cu spacer thickness, $t_{cu}$, in the range of 1~10 m was deposited on Si(100) wafers at room temperature by DC magnetron sputtering. In order to understand the dependence of the magnetic interaction between ferromagnetic $Co_{90}Fe_{10}$ (wt.%) and $Ni_{81}Fe_{19}$ (wt.%) layers separated by a nonmagnetic Cu spacer on the Cu layer thickness, we investigated the derivative ferromagnetic resonance (FMR) spectra. The FMR results were analyzed using the model of Layadi and Art-man for interlayer interaction. The interlayer coupling constant decreases in an oscillatory manner as the Cu spacer thickness increases up to 10 nm and approaches zero above 10 nm. The interlayer coupling constant is positive for all samples. Hence, it seems that the exchange coupling between adjacent CoFe and NiFe layers separated by a Cu layer is ferromagnetic.

  • PDF