• Title/Summary/Keyword: space time codes

Search Result 180, Processing Time 0.024 seconds

Performance Evaluation of Space-Time Codes and Channel Estimation in OFDM System for Wireless LANs (무선 LAN을 위한 OFDM 시스템에서 시공간 부호들의 성능 분석 및 채널 추정에 관한 연구)

  • Lee, Sang-Mun;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.8B
    • /
    • pp.760-770
    • /
    • 2002
  • Transmit diversity is an efficient diversity technique to improve performance and spectrum efficiency in wireless communication . Coding scheme designed for the transmit diversity is called space-time coding. In this paper, we propose a training structure to apply the transmit diversity to improve the performance of IEEE802.11a OFDM systems. Based on this training structure, we propose a channel estimation scheme using curve fitting. Also we compare and evaluate the performance of space-time codes. The performance of both diversity using space-time codes and channel estimation scheme is investigated by computer simulation in quasi-static 2-ray rayleigh fading environment.

A Study on Turbo Equalization for MIMO Systems Based on LDPC Codes (MIMO 시스템에서 LDPC 부호 기반의 터보등화 방식 연구)

  • Baek, Chang-Uk;Jung, Ji-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.5
    • /
    • pp.504-511
    • /
    • 2016
  • In this paper, MIMO system based on turbo equalization techniques which LDPC codes were outer code and space time trellis codes (STTC) were employed as an inner code are studied. LDPC decoder and STTC decoder are connected through the interleaving and de-interleaving that updates each other's information repeatedly. In conventional turbo equalization of MIMO system, BCJR decoder which decodes STTC coded bits required two-bit wise decoding processing. Therefore duo-binary turbo codes are optimal for MIMO system combined with STTC codes. However a LDPC decoder requires bit unit processing, because LDPC codes can't be applied to these system. Therefore this paper proposed turbo equalization for MIMO system based on LDPC codes combined with STTC codes. By the simulation results, we confirmed performance of proposed turbo equalization model was improved about 0.6dB than that of conventional LDPC codes.

Serial Concatenation of Space-Time and Recursive Convolutional Codes

  • Ko, Young-Jo;Kim, Jung-Im
    • ETRI Journal
    • /
    • v.25 no.2
    • /
    • pp.144-147
    • /
    • 2003
  • We propose a new serial concatenation scheme for space-time and recursive convolutional codes, in which a space-time code is used as the outer code and a single recursive convolutional code as the inner code. We discuss previously proposed serial concatenation schemes employing multiple inner codes and compare them with the new one. The proposed method and the previous one with joint decoding, both performing a combined decoding of the simultaneous output signals from multiple antennas, give a large performance gain over the separate decoding method. In decoding complexity, the new concatenation scheme has a lower complexity compared with the multiple encoding/joint decoding scheme due to the use of the single inner code. Simulation results for a communication system with two transmit and one receive antennas in a quasi-static Rayleigh fading channel show that the proposed scheme outperforms the previous schemes.

  • PDF

Quasi-Orthogonal Space-Time Block Codes Designs Based on Jacket Transform

  • Song, Wei;Lee, Moon-Ho;Matalgah, Mustafa M.;Guo, Ying
    • Journal of Communications and Networks
    • /
    • v.12 no.3
    • /
    • pp.240-245
    • /
    • 2010
  • Jacket matrices, motivated by the complex Hadamard matrix, have played important roles in signal processing, communications, image compression, cryptography, etc. In this paper, we suggest a novel approach to design a simple class of space-time block codes (STBCs) to reduce its peak-to-average power ratio. The proposed code provides coding gain due to the characteristics of the complex Hadamard matrix, which is a special case of Jacket matrices. Also, it can achieve full rate and full diversity with the simple decoding. Simulations show the good performance of the proposed codes in terms of symbol error rate. For generality, a kind of quasi-orthogonal STBC may be similarly designed with the improved performance.

The Layered Receiver Employing Whitening Process for Multiple Space-Time Codes (다중 시공간 부호를 위한 백색화 과정을 이용한 계층화 수신기)

  • Yim Eun Jeong;Kim Dong Ku
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.3 s.333
    • /
    • pp.15-18
    • /
    • 2005
  • Multiple space-time codes (M-STTC) is composed of several space-time codes. That provides high transmission rate as well as diversity and coding gain without bandwidth expansion. In this paper, the layered receiver structures employing whitening process for M-STTC is proposed. The proposed receiver is composed of the decoding order decision block and the layered detection block. The whitening process in the latter is utilized to maximize the receive diversity gain in the layered detection. The layered receiver employing whitening process has more diversity gain and advantage of the required number of receive antenna over the layered detection with MMSE nulling. The proposed scheme achieves a 5dB gain compared to the coded layered space-time processing at the FER of $10^{-2}$.

Rotationally Invariant Space-Time Trellis Codes with 4-D Rectangular Constellations for High Data Rate Wireless Communications

  • Sterian, Corneliu Eugen D.;Wang, Cheng-Xiang;Johnsen, Ragnar;Patzold, Matthias
    • Journal of Communications and Networks
    • /
    • v.6 no.3
    • /
    • pp.258-268
    • /
    • 2004
  • We demonstrate rotationally invariant space-time (ST) trellis codes with a 4-D rectangular signal constellation for data transmission over fading channels using two transmit antennas. The rotational invariance is a good property to have that may alleviate the task of the carrier phase tracking circuit in the receiver. The transmitted data stream is segmented into eight bit blocks and quadrature amplitude modulated using a 256 point 4-D signal constellation whose 2-D constituent constellation is a 16 point square constellation doubly partitioned. The 4-D signal constellation is simply the Cartesian product of the 2-D signal constellation with it-self and has 32 subsets. The partition is performed on one side into four subsets A, B, C, and D with increased minimum-squared Euclidian distance, and on the other side into four rings, where each ring includes four points of equal energy. We propose both linear and nonlinear ST trellis codes and perform simulations using an appropriate multiple-input multiple-output (MIMO) channel model. The 4-D ST codes constructed here demonstrate about the same frame error rate (FER) performance as their 2-D counterparts, having however the added value of rotational invariance.

Performance Evaluation of Space Time Frequency OFDM System using Super-Orthogonal Space Time Trellis Code Transmission Matrix (Super-Orthogonal STTC 전송 행렬을 이용한 STF-OFDM 시스템의 성능 평가)

  • Seo, Myoung-Seok;Shin, Chul-Min;Kim, Yoo-Mi;Kwak, Kyung-Sub
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.5 no.3 s.11
    • /
    • pp.29-39
    • /
    • 2006
  • In this paper, we propose an efficient method to detect the signal and evaluate performance of the system in frequency selective fading channel. We combine proposed system with OFDM (Orthogonal Frequency Division Multiplexing) to improve performance of the system. First, we study the SOSTTC-OFDM system using two transmit antenna and one receive antenna, and compare performance of the proposed space-time coded OFDM with that of previous system. We expand this system to the system using four transmit antennas with the proposed decoding method. Simulation results show that the proposed decoding method can detect the signal efficiently, and we identify that the performance of the proposed system is shown with varying doppler frequency in frequency selective fading channel.

  • PDF

Closed-form Expression for the Symbol Error Probability of Orthogonal Space-Time Block Codes with Quadrature Amplitude Modulation (QAM 변조방식을 갖는 직교 시공간 블록 부호의 심볼 오율)

  • 김상효;강익선;노종선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.6C
    • /
    • pp.561-569
    • /
    • 2003
  • In this paper, for my linear orthogonal space-time block including the orthogonal space-time codes introduced by Alamouti[1], Tarokh[14], and Xia[11], the exact expression for the pairwise error probability in the slow Rayleigh fading channel is derived in terms of the message symbol distance between two message vectors rather than the codeword symbol distance between two transmitted codeword matrices. Using the one-dimensional component symbol error probability, the exact closed form expressions for the symbol error probability of linear orthogonal space-time codes are derived for QPSK, 16-QAM, 64-QAM, and 256-QAM.

Performance Analysis of Quasi-Orthogonal Space-Time Block Coded OFDM Systems (준직교 시공간 블록 부호화된 OFDM 시스템의 성능 분석)

  • Hwang, Kyu-Sang;Yi, Jong-Sik;Jong, Jae-Pil;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.1
    • /
    • pp.10-18
    • /
    • 2004
  • As a technique for high-quality multimedia service in down-link, the transmit diversity schemes using a orthogonal space-time block codes were proposed. But if the number of transmit antenna is three or more, it was impossible to obtain full diversity gain because of the decline of spectral efficiency. Accordingly, the quasi-orthogonal space-time block code that not required a additional bandwidth was proposed. But using a space-time block codes, the transmit diversity schemes were verified over quasi-static and frequency non-selective channels. Therefore, in this paper, we analyze the performance of OFDM systems, which a frequency selective channel equalized a frequency non-selective channel, adapting the quasi-orthogonal space-time block code, and compare they to the conventional orthogonal space-time block coded OFDM systems.

  • PDF

High Data Rate Ultra Wideband Space Time Coded OFDM (고속 전송률 UWB 시공간 부호화 OFDM)

  • Lee Kwang-Jae;Chen Hsiao-Hwa;Lee Moon-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.7 s.349
    • /
    • pp.132-142
    • /
    • 2006
  • In this paper, we present a candidate high data rate space time coded OFDM system for short range personal networking. The system transmits the complex space time coded signals with a hybrid orthogonal frequency division multiplexing (OFDM) based on ultra wideband (UWB) pulses. The transmitted signals are sparse pulse trains modulated by a frequency selected from a properly designed set of frequencies. Additionally, a widely linear (WL) receive filter and a space time frequency transmission are designed by using two simple parallel linear detectors. To overcome the deeply fade in the propagation system, a beamforming combined with space time block codes also 따 e briefly discussed.