• Title/Summary/Keyword: space plane

Search Result 1,314, Processing Time 0.026 seconds

A Study on the Numerical Wave Propagation Properties of the Finite Difference-Time Domain(FD-TD) Method for EM Wave Problems (전자파 문제에 대한 시간영역-유한차분법의 수치파 전파모델의 성질에 관한 연구)

  • 김인석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.8
    • /
    • pp.1595-1611
    • /
    • 1994
  • In this paper, the numerical wave propagation properties of the finite difference-time domain(FD-TD) method is investigated as a discrete model describing electromagnetic(EM) wave propagation phenomena. The leap-frog approximation of Maxwell's curl equations in time-space simulates EM wave propagation in terms of the numerical characteristic and the domain of dependence. A geometrical interpretation of the FD-TD numerical procedure is presented. The numerical dispersion error due to the leap-frog approximation and its dependence on the stability factor are illustrated. The FD-TD method using the leap-frog approximation is inherently a descriptive model. Thus, not only any physical picture about EM wave propagation phenomena can be drawn through this model, but also physical or engineering parameters in the frequency domain can be extracted from descriptive results. E-plane filter characteristics in the WR-28 rectangular waveguide and reflection property of an inductive iris in the WR-90 rectangluar waveguide extracted from simulation of the FD-TD model is included.

  • PDF

Stereoscopic Conversion of Monoscopic Video using Edge Direction Histogram (에지 방향성 히스토그램을 이용한 2차원 동영상의 3차원 입체변환기법)

  • Kim, Jee-Hong;Yoo, Ji-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8C
    • /
    • pp.782-789
    • /
    • 2009
  • In this paper, we propose an algorithm for creating stereoscopic video from a monoscopic video. Parallel straight lines in a 3D space get narrower as they are farther from the perspective images on a 2D plane and finally meet at one point that is called a vanishing point. A viewer uses depth perception clues called a vanishing point which is the farthest from a viewer's viewpoint in order to perceive depth information from objects and surroundings thereof to the viewer. The viewer estimates the vanishing point with geometrical features in monoscopic images, and can perceive the depth information with the relationship between the position of the vanishing point and the viewer's viewpoint. In this paper, we propose a method to estimate a vanishing point with edge direction histogram in a general monoscopic image and to create a depth map depending on the position of the vanishing point. With the conversion method proposed through the experimental results, it is seen that stable stereoscopic conversion of a given monoscopic video is achieved.

Small Agricultural Skid-steer Loader Using Belt Clutch Power Transmission (벨트클러치 전동방식의 농업용 소형 스키드 스티어 로더)

  • 김상헌;신범수;정준모;김창식
    • Journal of Biosystems Engineering
    • /
    • v.21 no.2
    • /
    • pp.134-145
    • /
    • 1996
  • Since the skid-steer loader is able to work for excavating, lifting and transporting load even at the narrow space, they are widely used in the regular farm and the livestock farm. The skid-steer loader normally adopts the hydrostatic transmission because the power to move the machine backward and forward should be delivered independently on both sides of wheels. Contrast to the mechanical system such as chain and belt transmissions, however, the hydrostatic transmission is less efficient in the use of energy and more difficult in the maintenance. This study was intended to investigate the feasibility of using triangular-type belt clutch and V-belt transmission for the newly developed skid-steer loader in order to overcome the problems stated in the hydrostatic transmission. In the developed triangular-type belt clutch, the centers of driving, driven and idler sheaves are arranged in the triangular shape in a plane, and V-belts were loaded loosely on three sheaves. The power is transmitted by pressing the idler connected to a lever on the loosened V-belt. Contrast to the normal belt clutch using two sheaves, the newly developed belt clutch has the characteristics of small contact-angle of the driving sheave at no bucket load and increasing contact-angle at the time of power transmission. The results of research can be summarized as follows: 1) The developed triangular-type belt clutch adopted a spring-loaded slackside idler which could transmit more power than a fixed idler could by sacrificing the belt life. The life of V-belt used in the power transmission reached at 500 hours(6 months) when the engine power of 11.8 ㎾ was transmitted. Also, it was feasible to develop the large industrial skid-loader with the V-belt transmission by using the proper set of sheaves. 2) The developed skid-steer loader changed the rotating radius and speed with bucket loads as the conventional skid steer loader did. The rotating speed was 47 deg/s at the maximum bucket load of 2.74 kN when the minimum rotating radius was 1.5m. 3) The power required in turning at the bucket load of 2.74 kN was 4 ㎾ and the slippage of V-belt was less than 1%.

  • PDF

Investigation of Frozen Rock Failure using Thermal Infrared Image (열적외선영상을 이용한 동결된 암석의 파괴특성 연구)

  • Park, Jihwan;Park, Hyeong-Dong
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.144-154
    • /
    • 2015
  • Mechanical energy is accumulated in the object when stress is exerted on rock specimens, and the failure is occurred when the stress is larger than critical stress. The accumulated energy is emitted as various forms including physical deformation, light, heat and sound. Uniaxial compression strength test and point load strength test were carried out in low temperature environment, and thermal variation of rock specimens were observed and analyzed quantitatively using thermal infrared camera images. Temperature of failure plane was increased just before the failure because of concentration of stress, and was rapidly increased at the moment of the failure because of the emission of thermal energy. The variations of temperature were larger in diorite and basalt specimens which were strong and fresh than in tuff specimens which were weak and weathered. This study can be applied to prevent disasters in rock slope, tunnel and mine in cold regions and to analyze satellite image for predicting earthquake in cold regions.

Stability Analysis of Concrete Plugs Using a 3-D Failure Criterion (3차원 파괴조건식을 이용한 콘크리트 플러그의 안전도 평가)

  • Lee, Youn-Kyou;Song, Won-Kyoung;Park, Chul-Whan;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.21 no.6
    • /
    • pp.526-535
    • /
    • 2011
  • A new failure criterion for concrete, which takes into account the effect of the intermediate principal stress, is proposed. The new criterion, which takes the advantages from both the Mohr-Coulomb and the Willam-Warnke criteria, is linear in the meridian section, while its octahedral section is always smooth and convex. Fitting the triaxial compression data with the proposed criterion shows the high performance of the new criterion. A new formula for the factor of safety of concrete is defined based on the new failure criterion and it is employed in the stability analysis of the concrete plugs installed in the pilot plant. The new formula for the factor of safety measures the degree of closeness of a stress state to the failure surface in the octahedral plane. Finally, 3-D finite element analyses of pilot plant were carried out to obtain the stress distributions in the plugs. Then, the stress distributions are converted to those of factor of safety by use of the proposed formula. Based on the distribution of factor of safety in the concrete plugs, the stability of the tapered and wedge-shaped plugs is evaluated.

Analysis for the Behavior of Ridge-Cut Rock Slope (능선부 개착에 의해 형성된 암반사면 거동해석)

  • Cho, Tae-Chin;Hwang, Taik-Jean;Shin, Sun-Mi;Lee, Guen-Ho
    • Tunnel and Underground Space
    • /
    • v.22 no.6
    • /
    • pp.393-402
    • /
    • 2012
  • A behavior of ridge-cut rock slope had been monitored by installing inclinometers and regional slope movement toward rear side of cut face was detected. To delineate the governing factors of slope behavior, especially backward slip of ridge-cut slope, petrographic characteristics of rock cores obtained from four drilled boreholes had been examined. BIPS images inside boreholes had been acquired and structural characteristics of slope rock had been studied. Mechanical properties of discontinuity planes distributed in the drilled core had been measured and the shear strength of coal seam imbedded-discontinuity planes also had been obtained by performing the direct shear test. Monitoring results of slope behavior had been analyzed by comprehensibly considering both the mechanical and structural characteristics of slope rock and coal seam-imbedded discontinuity planes, and the potential governance of coal seam and clay minerals embedded in the joint plane on the regional slope behavior has been also identified.

Study on Hydraulic Fracturing in Transverse Isotropic Rock Using Bonded Particle Model (입자결합모델을 이용한 횡등방성 암석에서의 수압파쇄 특성 연구)

  • Jung, Jaewoong;Heo, Chan;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.470-479
    • /
    • 2013
  • Hydraulic fracturing is used as a method for promoting the fluid flow in the rock and, in the energy field such as geothermal development and the development of sales gas, many studies has been actively conducted. In many cases, hydraulic fracturing is not performed in isotropic rock and especially in the case of sedimentary rocks, hydraulic fracturing is conducted in the transverse isotropic rock. The direction of the crack growth on hydraulic fracturing does not necessarily coincides with the direction of maximum principal stress in the transverse isotropic rock. Therefore, in this study, bonded particle model with hydro-mechanical coupling analysis was adopted for analyzing the characteristics of hydraulic fracturing in transverse isotropic rock. In addition, experiments of hydraulic fracturing were conducted in laboratory-scale to verify the validity of numerical analysis. In this study, the crack growth and crack patterns showed significant differences depending on the viscosity of injection fluid, the angle of bedding plane and the influence of anisotropy. In the case of transverse isotropic model, the shear crack growth due to hydraulic fracturing appeared prominently.

Case study for Stability Estimation of Subway Twin Tunnels Using Scaled Model Tests (축소모형실험을 통한 지하철 병설터널의 안정성평가 사례연구)

  • Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.425-438
    • /
    • 2019
  • A scaled model test was performed to evaluate the stability of subway twin tunnels excavated in the sedimentary rocks with subhorizontal bedding planes. The size of studied tunnel was 6.2 m×6.8 m and pillar width was 4 m. The anisotropic model test specimen was manufactured with the modeling materials suitable for in-situ rocks by way of dimensional analysis. Fracture and deformation behaviors of tunnels according to applied loads were investigated through the biaxial compression test. As the load was increased on the model specimen, the first crack occurred in the middle part of the pillar across twin tunnels and the gradual fractures progressed at crown and floor of twin tunnels. All the cracks in pillar were generated along the existing bedding planes so that they were found to be the main cause of the pillar failure. In addition, the test results were verified by numerical analysis on the experimental conditions using FLAC ubiquitous joint model. The distribution of plastic regions obtained from numerical analysis were in general agreement with test results, confirming the reliability of the scaled model test conducted in this study.

Numerical study on the charateristics of fracture growth in fracture controlled blasting using notched blasthole (노치성형 발파공을 이용한 균열제어 발파방법의 균열발생 특성에 대한 수치해석적 고찰)

  • 백승규;김재동;임한욱;류창하
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.64-71
    • /
    • 1999
  • A numerical analysis was performed to investigate the effects of notched blasthole in controlling the fracture plane. Analyzed were elastic and elasto-plastic response of rock, and fracture propagation under static and dynamic load conditions. Results showed that the region exceeding the tensile strength extended up to three times the radius of a normal blasthole in elastic analysis, while fifteen times in elasto-plastic analysis. It was shown that a crack was driven from the notch tip up to the distance of 23 times the hole radius in the case of a notched blasthole with a notch of 5 mm in depth and 30 mm in length.

  • PDF

Characteristics of Particle Separation in Suspension using an Ultrasonic Standing Wave

  • Shin, Beom-Soo;Danao, Mary-Grace C.
    • Journal of Biosystems Engineering
    • /
    • v.37 no.2
    • /
    • pp.113-121
    • /
    • 2012
  • Purpose: Particle separation in solution is one of important process in a unit operation as well as in an extract preparation for biosensors. Contrary to centrifuge-type of mesh-type filter, using an ultrasonic standing wave make the filtering process continuous and free from maintenance. It is needed to investigate the characteristics of particle movement in the ultrasonic standing wave field. Methods: Through the computer simulation the effects of major design and driving parameters on the alignment characteristics of particles were investigated, and a cylindrical chamber with up-stream flow type was devised using two circular-shape PZTs on both sides of the chamber, one for transmitting ultrasonic wave and the other for just reflecting it. Then, the system performance was experimentally investigated as well. Results: The speed of a particle to reach pressure-node plane increased as the acoustic pressure and size of particle increased. The maximum allowable up-stream flow rate could be calculated as well. As expected, exact numbers of pressure-node planes were well formed at specific locations according to the wavelength of ultrasonic wave. As the driving frequency of PZT got close to its resonance frequency, the bands of particles were observed clearer, which meant the particles were trapped into narrower space. Higher excitation voltages to the PZT produced a greater acoustic force with which to trap particles in the pressure-node planes, so that the particles gathered could move upwards without disturbing their alignments even at a higher inlet flow rate. Conclusions: This research showed the feasibility of particle separation in solution in the continuous way by an ultrasonic standing wave. Further study is needed to develop a device to collect or harvest those separated particles.