• 제목/요약/키워드: space of flow

검색결과 2,692건 처리시간 0.027초

Marangoni convection radiative flow of dusty nanoliquid with exponential space dependent heat source

  • Mahanthesh, Basavarajappa;Gireesha, Bijjanal Jayanna;PrasannaKumara, Ballajja Chandra;Shashikumar, Nagavangala Shankarappa
    • Nuclear Engineering and Technology
    • /
    • 제49권8호
    • /
    • pp.1660-1668
    • /
    • 2017
  • The flow of liquids submerged with nanoparticles is of significance to industrial applications, specifically in nuclear reactors and the cooling of nuclear systems to improve energy efficiency. The application of nanofluids in water-cooled nuclear systems can result in a significant improvement of their economic performance and/or safety margins. Therefore, in this paper, Marangoni thermal convective boundary layer dusty nanoliquid flow across a flat surface in the presence of solar radiation is studied. A two phase dusty liquid model is considered. Unlike classical temperature-dependent heat source effects, an exponential space-dependent heat source aspect is considered. Stretching variables are utilized to transform the prevailing partial differential system into a nonlinear ordinary differential system, which is then solved numerically via the Runge-Kutta-Fehlberg approach coupled with a shooting technique. The roles of physical parameters are focused in momentum and heat transport distributions. Graphical illustrations are also used to consider local and average Nusselt numbers. We examined the results under both linear and quadratic variation of the surface temperature. Our simulations established that the impact of Marangoni flow is useful for an enhancement of the heat transfer rate.

Numerical simulations of the vertical kink oscillations of the solar coronal loop with field aligned flows

  • Pandey, V.S.;Magara, T.;Lee, D.H.;Selwa, M.
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.103.1-103.1
    • /
    • 2011
  • Recent observations by Hinode show weakly-attenuated coronal loop oscillations in the presence of background flow (Ofman & Wang 2008, A&A, 482, L9). We study the vertical kink oscillations in solar coronal loops, considering field aligned flows inside the loops as well as surrounding the loops environment. The two dimensional numerical model of straight slab is used to explore the excitation and attenuation of the impulsively triggered fast magnetosonic standing kink waves. A full set of time dependent ideal magnetohydrodynamics equations is solved numerically taking into account the value of flow of the order of observed flows detected by SOT/Hinode. We find that relaxing the assumption of the limited flows within the loops enhances the damping rate of the fundamental mode of the standing kink waves by 2 - 3 % as compared to flow pattern which is basically localized within the loops. We further notice that extending the flow pattern beyond the loop thickness also enhances the strength of the shock associated with slow magnetoacoustic waves, recognized as an addition feature detected in the numerical simulation. The wider out-flow pattern destroys the oscillation patterns early as compared to narrower flow pattern, in other words we can say that it affects the durability of the oscillation. However, for the typical coronal loops parameters we find that the observed durability periods of the SOT/Hinode observation can be achieved with an out-flow Gaussian patterns for which half-width is not greater than factor 2.0 of the loop-half-width. explain a possible relation between electric current structure and sigmoid observed in a preflare phase.

  • PDF

Flow Truss Dome 구조물의 비대칭 하중모드에 따른 불안정 현상에 관한 연구 (A Study of Unstable Phenomenon of Flow Truss Dome Structure with Asymmetric Load Modes)

  • 손수덕;김승덕;강문명
    • 한국공간구조학회논문집
    • /
    • 제2권4호
    • /
    • pp.61-76
    • /
    • 2002
  • The structure system that is discreterized by continuous shells is usually used to make a large space structures and these structures show the collapse mechanisms that are captured at over the limit load, and snap-through and bifurcation are most well known of it. For the collapse mechanism, rise-span ratio, element stiffness and load mode are main factor, which it give an effect to unstable behavior. Moreover, resist force of structure can be reduced by initial condition and initial imperfection significantly. In order to investigate the instability of shell structures, the finite deformation theory can be applied and it becomes a nonlinear mathematics in which use equation of tangential stiffness incrementally. With an initial imperfection, using simple example and Flow Truss Dome, the buckling characteristics of space truss is main purpose of this paper, and unstable behavior is studied by proposed the numerical method. Also, by using MIDAS, this research work analyzes displacements and inner forces as the design load of model, and the ratio of buckling load of design load is investigated.

  • PDF

Numerical simulation of jet flow impinging on a shielded Hartmann whistle

  • Michael, Edin;Narayanan, S.;Jaleel. H, Abdul
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.123-136
    • /
    • 2015
  • The present study numerically investigates the effect of shield on the flow characteristics of Hartmann whistle. The flow characteristics of un-shielded Hartmann whistle are compared with whistles of different shield heights 15 mm, 17 mm, 20 mm, 25 mm and 30 mm. The comparison of Mach number contours and transient velocity vectors of shielded Hartmann whistles with un-shielded ones for the same conditions reveal that the presence of shield causes the exiting jet to stick to the wall of the shield without causing spill-over around the cavity inlet, thus sustaining the shock oscillation as seen in the unshielded Hartmann whistle, which has intense flow/shock oscillation and spill-over around the cavity mouth. The velocity vectors indicate jet regurgitance in shielded whistles showing inflow and outflow phases like un-shielded ones with different regurgitant phases. The sinusoidal variation of mass flow rate at the cavity inlet in un-shielded Hartmann whistle indicates jet regurgitance as the primary operating mode with large flow diversion around the cavity mouth whereas the non-sinusoidal behavior in shielded ones represent that the jet regurgitance is not the dominant operating mode. Thus, this paper sufficiently demonstrates the effect of shield in modifying the flow/shock oscillations in the vicinity of the cavity mouth.

A study on the performance and internal flow of inline Francis turbine

  • Chen, Chengcheng;Inagaki, Morihito;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권10호
    • /
    • pp.1225-1231
    • /
    • 2014
  • This paper presents the performance characteristic of a Francis hydro turbine with an inline casing. This turbine is designed for city water supply system. Due to large changes in ground elevation with high points and low points, some systems may experience larger-than-normal required pressures in areas with low ground elevations. One way to dissipate these excess pressures is by the use of an inline-turbine instead of an inline-pressure reducing valve. For best applicability and minimal space consumption, the turbine is designed with an inline casing instead of the common spiral casing. As a characteristic of inline casing, the flow accesses to the runner in the radial direction, showing a low efficiency. The installation of vanes improves the internal flow and gives the positive encouragement to the output power. For the power transmission to the outside of the turbine casing from the runner axis, a belt passage is designed in the inline casing, as its influence, the region after the belt passage shows a relatively low output power. The clearance gap in the runner side space is considered, in which a small volume of flow is contracted into the clearance gap, forming the leakage flow. The leakage flow leads to a decrease in the efficiency.

지하생활공간 화재시 풍속에 따른 열유동 특성 연구 (Experimental Study on Heat Flow According to the Wind Velocity in an Underground Life Space)

  • 김영노;석창목;김화중
    • 한국화재소방학회논문지
    • /
    • 제21권3호
    • /
    • pp.61-68
    • /
    • 2007
  • 본 연구에서는 지하생활공간을 대상으로 풍속의 변화에 대한 축소모델 실험을 통하여 열유동 및 화재성상을 분석하였다. 풍속이 증가할수록 화재실의 온도상승 시간은 빨라지고, 실의 온도도 증가하였다. 그리고 풍속이 증가할수록 화재실의 개구부에서 최고온도를 나타내었다. 화재확산에 따른 열유동은 풍속이 증가할수록 와류확산을 촉진시켜 연기발생과 화염의 크기를 증가시키고, 인근실의 내부보다 통로에서 높은 온도분포를 나타내었다. 끝으로 지하생활공간의 화재시 열유동은 풍향과 풍속에 의해 화재확산이 결정되어지고 풍속이 증가할수록 온도증가와 감소는 빠르게 진행됨을 확인할 수 있었다.

A Comparative Study of Numerical Methods on Aerodynamic Characteristics of a Compressor Rotor at Near-stall Condition

  • Kim, Donghyun;Kim, Kuisoon;Choi, Jeongyeol;Son, Changmin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.157-164
    • /
    • 2015
  • The present work performs three-dimensional flow calculations based on Reynolds Averaged Navier-Stokes (RANS) and Delayed Detached Eddy Simulation (DDES) to investigate the flow field of a transonic rotor (NASA Rotor 37) at near-stall condition. It is found that the DES approach is likely to predict well the complex flow characteristics such as secondary vortex or turbulent flow phenomenon than RANS approach, which is useful to describe the flow mechanism of a transonic compressor. Especially, the DES results show improvement of predicting the flow field in the wake region and the model captures reasonably well separated regions compared to the RANS model. Besides, it is discovered that the three-dimensional vortical flows after the vortex breakdown from the rotor tip region are widely distributed and its vortex structures are clearly present. Near the rotor leading edge, a part of the tip leakage flows in DES solution spill over into next passage of the blade owing to the separation vortex flow and the backflow is clearly seen around the trailing edge of rotor tip. Furthermore, the DES solution shows strong turbulent eddies especially in the rotor hub, rotor tip section and the downstream of rotor trailing edge compared to the RANS solution.

A PIV Study of Flow Patterns Over Stationary and Pitch-Oscillating Airfoils with Blowing Jet

  • Lee, Ki-Young;Chung, Hyoung-Seog;Cho, Dong-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제9권1호
    • /
    • pp.111-120
    • /
    • 2008
  • A particle image velocimetry (PIV) technique was employed to investigate the effects of blowing jet on the flow characteristics over stationary and pitch-oscillating airfoils. The Reynolds number was $7.84{\times}10^5$ based on the chord length. It was found that for stationary airfoil cases, continuous and pulsating blowing jets successfully reduced separated wake region at high angles of attack. A comparison study of two different types of jet blowing indicated that pulsating jet is more effective than continuous jet for flow separation control. Pulsating leading-edge blowing postpones flow separation and increased stall angle of attack by $2^{\circ}{\sim}3^{\circ}$. For pitch-oscillating airfoil cases, the PIV results showed that blowing jet efficiently delays the separation onset point during pitch-up stroke, whereas it does not prevent flow separation during pitch-down stroke, even at angles of attack smaller than static ones.

관람자 행태에 의한 미술관 전시공간의 특성 연구 - 전시대상과 전시공간의 상관성을 중심으로 - (A Study on the Attribute of an Art Museum Exhibit Space by a Spectator Behavior)

  • 윤재은;김주희
    • 한국실내디자인학회논문집
    • /
    • 제15권4호
    • /
    • pp.81-88
    • /
    • 2006
  • The form and function of modern museum present more a variety of aspects in need of transition of the mature civil society and culture than the past. Considering that an art museum is the space where a multitude of unspecified visitors inspect simultaneously, exhibitions and adequate construction make visitors lead to successively visual contact. Consequently a goal of this study is to analyze that there is correlation between exhibit space and exhibitions and to suggest an alternative plan at exhibition through relationship among exhibitions, exhibit space and spectators' behavior. Two Art galleries (one is a large-sized gallery and the other is a small-sized one) located in Pyung-Chang dong were selected to analyze the correlation and suggest the better display for the exhibition. The finding of the study is following. The exhibit space which spectators recognize is assumed diverse forms by an unique characteristics of exhibits and space and an arrangement of exhibitions and the path of flow of spectator who walking ahead have an huge effect on a spectators' behavior. In other words, spectators' watching patterns are affected by display of exhibitions and the path of flow. That is to say, the spectators' behavior and the concentration to watch exhibitions is decided by the exhibit form in the museum, and the quality of watching experience is depended on the spectators' relevant knowledge prior to exhibitions.

날개-평판 접합부에서의 날개 앞전 판 최적화를 통한 유동특성 향상 (Improvement of the flow around airfoil/flat-plate junctures by optimization of the leading-edge fence)

  • 조종재;김귀순
    • 한국항공우주학회지
    • /
    • 제37권9호
    • /
    • pp.829-836
    • /
    • 2009
  • 말굽와류로 대표되는 3차원 유동현상은 필연적으로 주유동에 대한 2차 유동의 형태로 발생되며, 유동손실을 유발하게 된다. 본 논문에서는 2차유동 손실을 일으키는 주요 요인중의 하나인 말굽와류의 강도를 감쇄시키기 위해 일반적인 날개 앞전에 설치한 판에 대해, 판의 설치 높이, 길이, 폭 및 두께 등의 형상변수를 설계변수로 정하여 이를 최적화하였다. 근사최적설계 기법을 이용 최적화를 수행하였으며, $FLUENT^{TM}$$iSIGHT^{TM}$를 이용하였다. 최적화 수행결과, 기준 모델의 경우보다 전압력 계수가 약 7.5% 감소하였다.