• Title/Summary/Keyword: space missions

Search Result 333, Processing Time 0.023 seconds

THE PROSPECT OF INTERSTELLAR OBJECT EXPLORATIONS FOR SEARCHING LIFE IN COSMOS (우주생명현상과 성간천체 탐사 전망)

  • Minsun Kim;Ryun Young Kwon;Thiem Hoang;Sungwook E. Hong
    • Publications of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.25-36
    • /
    • 2023
  • Since interstellar objects like 1I/'Oumuamua and 2I/Borisov originate from exoplanetary systems, even if we do not visit the exoplanetary systems, flyby, rendezvous, and sample return missions of interstellar objects can provide clues to solve the mysteries of cosmic life phenomena such as the origin of exoplanetary systems, galactic evolution, biosignatures (or even technosignatures), and panspermia. In this paper, we review space missions for interstellar object exploration in the stage of mission design or concept study such as Project Lyra, Bridge, Comet Interceptors, and LightcraftTM. We also review space missions, OSIRIS-REx and NEA Scout, designed for Near Earth Asteroids(NEA) explorations, to investigate the current state of basic technologies that can be extended to explore interstellar objects in a velocity of ~ 6AU/year. One of the technologies that needs to be developed for interstellar object exploration is a spacecraft propulsion method such as solar sail, which can catch up with the fast speed of interstellar objects. If this kind of propulsion becomes practical for space explorations, interstellar object explorations will mark a new era and serve as a driving force to provide evidences of cosmic life.

ASTRONAUT'S EARTH OBSERVATION ON THE INTERNATIONAL SPACE STSTION

  • Lee Joo-Hee;Kim Yeon-Kyu;Kim Jong-Woo;Choi Gi-Hyuk
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.624-627
    • /
    • 2005
  • Ministry of Science & Technology (MOST) and Korea Aerospace Research Institute (KARI) are preparing for the first Korean astronaut program based on the mid and long-term basic plan for space development of Korea from the year of 2003. KARI is making plans for the Korean astronaut's missions with Russia. To participate in the International Space Station (ISS) utilization through the Korean astronaut program, KARI investigates a lot of manned space missions. Among the suggested items, Earth observation on the Russian Module of ISS is the one expected mission for a Korean astronaut. This paper is intended to give readers a brief introduction of ISS Russian Module and research fields of Earth observation for astronaut's mission.

  • PDF

OPTIMAL TRAJECTORY CORRECTION MANEUVER DESIGN USING THE B-PLANE TARGETING METHOD FOR FUTURE KOREAN MARS MISSIONS (B-평면 조준법을 이용한 화성 탐사선의 궤적 보정을 위한 최적의 기동 설계)

  • Song, Young-Joo;Park, Eun-Seo;Yoo, Sung-Moon;Park, Sang-Young;Choi, Kyu-Hong;Yoon, Jae-Cheol;Yim, Jo-Ryeong;Choi, Joon-Min;Kim, Byung-Kyo
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.451-462
    • /
    • 2005
  • Optimal Trajectory Correction Maneuver (TCM) design algorithm has been developed using the B-plane targeting method for future Korean Mars missions. For every-mission phase, trajectory informations can also be obtained using this developed algorithms which are essential to design optimal TCM strategy. The information were computed under minimum requiring perturbations to design Mars missions. Spacecraft can not be reached at designed aim point because of unexpected trajectory errors, caused by many perturbations and errors due to operating impulsive maneuvers during the cruising phase of missions. To maintain spacecraft's appropriate trajectory and deliver it to the designed aim point, B-plane targeting techniques are needed. A software NPSOL is used to solve this optimization problem, with the performance index of minimizing total amount of TCM's magnitude. And also executing time of maneuvers on be controlled for the user defined maneuver number $(1\~5)$ of TCMs. The constraints, the Mars arrival B-plane boundary conditions, are formulated for the problem. Results of this work show the ability to design and analyze overall Mars missions, from the Earth launch phase to Mars arrival phase including capture orbit status for future Korean Mars missions

Analysis of SEAD Mission Procedures for Manned-Unmanned Aerial Vehicles Teaming (유무인기 협업 기반의 SEAD 임무 수행절차 분석)

  • Kim, Jeong-Hun;Seo, Wonik;Choi, Keeyoung;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.678-685
    • /
    • 2019
  • Due to the changes in future war environment and the technological development of the aviation weapon system, it is required to carry out on the analysis of the Manned-Unmanned aerial vehicles Teaming(MUM-T). Conventional manned-unmanned aerial vehicles operate according to the air strategy missions and vehicles' performance. In this paper, we analyze conventional aerial vehicle's mission to derive various kinds of missions of MUM-T after analyzing the unmanned aircraft systems roadmap issued by US DoD and the air strategy of US Air Force. Next, we identify the basic operations of the vehicles to carry out the missions, select the MUM-T based Suppression of Enemy Air Defense missions(SEAD), and analyze the procedure for performing the missions step by step. In this paper, we propose a procedure of the mission in the context of physical space and timeline for the realization of the concept of MUM-T.

Spacecraft Guidance Algorithms for Asteroid Intercept and Rendezvous Missions

  • Hawkins, Matt;Guo, Yanning;Wie, Bong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.154-169
    • /
    • 2012
  • This paper presents a comprehensive review of spacecraft guidance algorithms for asteroid intercept and rendezvous missions. Classical proportional navigation (PN) guidance is reviewed first, followed by pulsed PN guidance, augmented PN guidance, predictive feedback guidance, Lambert guidance, and other guidance laws based on orbit perturbation theory. Optimal feedback guidance laws satisfying various terminal constraints are also discussed. Finally, the zero-effort-velocity (ZEV) error, analogous to the well-known zero-effort-miss (ZEM) distance, is introduced, leading to a generalized ZEM/ZEV guidance law. These various feedback guidance laws can be easily applied to real asteroid intercept and rendezvous missions. However, differing mission requirements and spacecraft capabilities will require continued research on terminal-phase guidance laws.

Development of Air to Air Mission Tactics for Manned-Unmanned Aerial Vehicles Teaming (공대공 교전을 위한 유무인항공기 협업 전술 개발)

  • Hwang, Seong-In;Yang, Kwang-Jin;Oh, Jihyun;Seol, Hyeonju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.47-57
    • /
    • 2022
  • UAVs have been deployed various missions such as deception, reconnaissance and attack since they have been applied in battlefield and achieved missions successfully instead of man. In the past, it is impossible for UAVs to conduct autonomous missions or cooperative mission between manned aircraft due to the limitation of the technology. However, theses missions are possible owing to the advance in communication and AI Technology. In this research, we identified the possible cooperative missions between manned and unmanned team based on air-to-air mission. We studied cooperative manned and unmanned tactics about fighter sweep mission which is the core and basic operation among various air-to-air missions. We also developed cooperative tactics of manned and unmanned team by classifying nonstealth and stealth confrontational tactics. Hereafter, we verified the validity of the suggested tactics using computer simulations.

Analysis of Flight Data in SpaceX's Falcon 9 (스페이스X사의 팔컨 9 비행데이터 분석)

  • Kim, Hyeonjun;Ryu, Chulsung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.12
    • /
    • pp.997-1010
    • /
    • 2021
  • This study collected and analyzed flight data of SpaceX's Falcon 9 launch vehicle. All missions were classified by orbital types, such as Polar, SSO, ISS, LEO and GTO missions. In characteristic maneuvers of main engine cutoff, boostback, reentry and landing burn at each stage of 1st stage launch vehicle, changes of the physical parameters like speed, altitude, dynamic pressure and acceleration were investigated. The guidelines derived from detailed maneuver analysis were suggested, which can be used as design and evaluation references for developing reusable launch vehicle.

Multi-wavelength Extragalactic Studies in the AKARI Deep Field - South

  • Jeong, Woong-Seob;Kim, Minjin;Ko, Jongwan;Park, Sung-Joon;Ko, Kyeongyeon;Jo, Youngsoo;Lee, Min Gyu;Seo, Hyun Jong;Kim, Taehyun;Pyo, Jeonghyun;Lee, Dongseob;Kim, Il-Joong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.31.4-32
    • /
    • 2018
  • The ADF-S (AKARI Deep Field - South) toward South Ecliptic Pole is one of the deep survey fields designed for the study of Cosmic Infrared Background (CIB). Owing to the easy accessibility with space missions and its low background brightness, the deep extragalactic survey was initiated by AKARI deep far-infrared observations and it will be performed by other future missions (e.g., Euclid, NISS, SPHEREx). The recent optical survey with KMTNet enabled us to identify the optical counterparts for dusty star-forming galaxies such as ULIRG, DOG, SMG. In addition, the NISS will perform the valuable spectro-photometric survey in the ADF-S. Those multi-wavelength data sets helps to trace the major galaxy population contributing to the CIB. Here, we introduce the extragalactic survey with the NISS and report the current status of the multi-wavelength extragalactic studies in the ADF-S.

  • PDF