• Title/Summary/Keyword: space missions

Search Result 333, Processing Time 0.022 seconds

Spaceborne Cryogenic Cooler Development Status (우주용 극저온 냉각기 기술개발동향)

  • Kim, Hong-Bae;Lee, Seung-Yup;Lee, Won-Beom;Kim, Gyu-Sun
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.2
    • /
    • pp.48-58
    • /
    • 2009
  • Since 1960s, cryogenic cooling technologies has been adopted in the development of spacecraft with components that must be cooled to cryogenic temperatures of 2 to 150 K. In recent years this technology has been a substantial growth in the emerging number of programs that include such spacecraft to service scientific, military, and weather observation missions. The cooling of optics and detectors to reduce signal noise in infrared (IR) telescopes is the principal applications of cryogenic cooling technologies. The choice of cooling technologies depends on the desired temperature level, the amount of heat to be removed, and the required operating life. This paper will present the status of modern cryogenic cooling technologies especially for space application.

  • PDF

Gravity Estimation by Using Low-Low Inter-Satellite Tracking Data (저궤도 위성간 추적데이터를 이용한 지구중력장 측정)

  • Kim,Jeong-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.58-68
    • /
    • 2003
  • Accurate estimation of the Earth gravity field plays an important role in understanding the Earth geodynamic activities. After brief discussion on the objective of the gravity estimation, dedicated satellite missions for this purpose are described. Recently launched NASA/DLR Gravity Recovery and Climate Experiment (GRACE) mission, which consists of two co-orbiting low altitude satellites, is described. For the performance analysis, full numerical simulation was performed. The simulation procedure and its key instrument modelings are described. From the simulation results, a significant improvement on the Earth gravity field accuracy is expected.

Investigation of Reflectance Distribution and Trend for the Double Ray Located in the Northwest of Tycho Crater

  • Yi, Eung Seok;Kim, Kyeong Ja;Choi, Yi Re;Kim, Yong Ha;Lee, Sung Soon;Lee, Seung Ryeol
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.2
    • /
    • pp.161-166
    • /
    • 2015
  • Analysis of lunar samples returned by the US Apollo missions revealed that the lunar highlands consist of anorthosite, plagioclase, pyroxene, and olivine; also, the lunar maria are composed of materials such as basalt and ilmenite. More recently, the remote sensing approach has enabled reduction of the time required to investigate the entire lunar surface, compared to the approach of returning samples. Moreover, remote sensing has also made it possible to determine the existence of specific minerals and to examine wide areas. In this paper, an investigation was performed on the reflectance distribution and its trend. The results were applied to the example of the double ray stretched in parallel lines from the Tycho crater to the third-quadrant of Mare Nubium. Basic research and background information for the investigation of lunar surface characteristics is also presented. For this research, resources aboard the SELenological and ENgineering Explorer (SELENE), a Japanese lunar probe, were used. These included the Multiband Imager (MI) in the Lunar Imager/Spectrometer (LISM). The data of these instruments were edited through the toolkit, an image editing and analysis tool, Exelis Visual Information Solution (ENVI).

Implementation and Test of the Automatic Flight Dynamics Operations for Geostationary Satellite Mission

  • Park, Sang-Wook;Lee, Young-Ran;Lee, Byoung-Sun;Hwang, Yoo-La;Galilea, Javier Santiago Noguero
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.635-642
    • /
    • 2009
  • This paper describes the Flight Dynamics Automation (FDA) system for COMS Flight Dynamics System (FDS) and its test result in terms of the performance of the automation jobs. FDA controls the flight dynamics functions such as orbit determination, orbit prediction, event prediction, and fuel accounting. The designed FDA is independent from the specific characteristics which are defined by spacecraft manufacturer or specific satellite missions. Therefore, FDA could easily links its autonomous job control functions to any satellite mission control system with some interface modification. By adding autonomous system along with flight dynamics system, it decreases the operator's tedious and repeated jobs but increase the usability and reliability of the system. Therefore, FDA is used to improve the completeness of whole mission control system's quality. The FDA is applied to the real flight dynamics system of a geostationary satellite, COMS and the experimental test is performed. The experimental result shows the stability and reliability of the mission control operations through the automatic job control.

Conceptual Design of Korea Aerospace Research Institute Lunar Explorer Dynamic Simulator

  • Rew, Dong-Young;Ju, Gwang-Hyeok;Kang, Sang-Wook;Lee, Sang-Ryool
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.377-382
    • /
    • 2010
  • In lunar explorer development program, computer simulator is necessary to provide virtual environments that vehicle confronts in lunar transfer, orbit, and landing missions, and to analyze dynamic behavior of the spacecraft under these environments. Objective of simulation differs depending on its application in spacecraft development cycle. Scope of use cases considered in this paper includes simulation of software based, processor and/or hardware in the loop, and support of ground-based flight test of developed vehicle. These use cases represent early phase in development cycle but reusability of modeling results in the next design phase is considered in defining requirements. A simulator architecture in which simulator platform is located in the middle and modules for modeling, analyzing, and three dimensional visualizing are connected to that platform is suggested. Baseline concepts and requirements for simulator development are described. Result of trade study for selecting simulation platform and approaches of defining other simulator components are summarized. Finally, characters of lunar elevation map data which is necessary for lunar terrain generation is described.

Development of Precise Lunar Orbit Propagator and Lunar Polar Orbiter's Lifetime Analysis

  • Song, Young-Joo;Park, Sang-Young;Kim, Hae-Dong;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.2
    • /
    • pp.97-106
    • /
    • 2010
  • To prepare for a Korean lunar orbiter mission, a precise lunar orbit propagator; Yonsei precise lunar orbit propagator (YSPLOP) is developed. In the propagator, accelerations due to the Moon's non-spherical gravity, the point masses of the Earth, Moon, Sun, Mars, Jupiter and also, solar radiation pressures can be included. The developed propagator's performance is validated and propagation errors between YSPOLP and STK/Astrogator are found to have about maximum 4-m, in along-track direction during 30 days (Earth's time) of propagation. Also, it is found that the lifetime of a lunar polar orbiter is strongly affected by the different degrees and orders of the lunar gravity model, by a third body's gravitational attractions (especially the Earth), and by the different orbital inclinations. The reliable lifetime of circular lunar polar orbiter at about 100 km altitude is estimated to have about 160 days (Earth's time). However, to estimate the reasonable lifetime of circular lunar polar orbiter at about 100 km altitude, it is strongly recommended to consider at least $50\;{\times}\;50$ degrees and orders of the lunar gravity field. The results provided in this paper are expected to make further progress in the design fields of Korea's lunar orbiter missions.

INTRODUCTION OF COMS SYSTEM

  • Baek, Myung-Jin;Han, Cho-Young
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.56-59
    • /
    • 2006
  • In this paper, Korea's first geostationary Communication, Ocean and Meteorological Satellte(COMS) program is introduced. COMS program is one of the Korea National Space Programs to develop and operate a pure civilian satellite of practical-use for the compound missions of meteorological observation and ocean monitoring, and space test of experimentally developed communication payload on the geostationary orbit. The target launch of COMS is scheduled at the end of 2008. COMS program is international cooperation program between KARI and ASTRIUM SAS and funded by Korean Government. COMS satellite is a hybrid satellite in the geostationary orbit, which accommodates multiple payloads of MI(Meteorological Imager), GOCI(Geostationary Ocean Color Imager), and the Ka band Satellite Communication Payload into a single spacecraft platform. The MI mission is to continuously extract meteorological products with high resolution and multi-spectral imager, to detect special weather such as storm, flood, yellow sand, and to extract data on long-term change of sea surface temperature and cloud. The GOCI mission aims at monitoring of marine environments around Korean peninsula, production of fishery information (Chlorophyll, etc.), and monitoring of long-term/short-term change of marine ecosystem. The goals of the Ka band satellite communication mission are to in-orbit verify the performances of advanced communication technologies and to experiment wide-band multi-media communication service mandatory.

  • PDF

Calibration of a Five-Hole Multi-Function Probe for Helicopter Air Data Sensors

  • Kim, Sung-Hyun;Kang, Young-Jin;Myong, Rho-Shin;Cho, Tae-Hwan;Park, Young-Min;Choi, In-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.43-51
    • /
    • 2009
  • In the flight of air vehicles, accurate air data information is required to control them effectively. Especially, helicopters are often put in drastic motion involved with high angle of attacks in order to perform difficult missions. Among various sensors, the multi function probe (MFP) has been used in the present study mainly owing to its advantages in structural simplicity and capability of providing various information such as static and total pressure, speed, and pitch and yaw angles. In this study, a five-hole multi-function probe (FHMFP) is developed and its calibration is conducted using multiple regressions. In this work a calibration study on the FHMFP, an air data sensor for helicopters, is reported. It is shown that the pitch and yaw angles' accuracy of calibration is ${\pm}0.91^{\circ}$ at a cone angle of $0^{\circ}{\sim}30^{\circ}$ and ${\pm}2.0^{\circ}$ at $30^{\circ}{\sim}43^{\circ}$, respectively, which is summarized in table 3.

A Case Study in the Mars Landing Site Selection for Science Objects

  • Seo, Haingja;Kim, Eojin;Kim, Joo Hyeon;Lee, Joo Hee;Choi, Gi-Hyuk;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.375-380
    • /
    • 2012
  • It is a crucial matter to select a landing site for landers or rovers in planning the Mars exploration. The landing site must have not only a scientific value as a landing site, but also geographical features to lead a safe landing for Mars probes. In this regard, this study analyzed landing site of Mars probes and rovers in previous studies and discussed the adequacy of the landing site to scientific missions. Moreover, this study also examined domestic studies on the Mars. The frameworks of these studies will guide the selection of exploration sites and a landing site when sending Mars probe to the Mars through our own efforts. Additionally, this paper will be used as the preliminary data for selection of exploration site and a landing site.

Laser Ranging for Lunnar Reconnaissance Orbiter using NGSLR (NGSLR 시스템을 이용한 LRO 달 탐사선의 레이저 거리측정)

  • Lim, Hyung-Chul;McGarry, Jan;Park, Jong-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1136-1143
    • /
    • 2010
  • One-way laser ranging technology is applied for the precise orbit determination of LRO, which is the first trial for supporting the missions of lunar or planetary spacecraft. In this paper, LRO payload and ground system are discussed for LRO laser ranging, and some errors effecting on time of flight and tracking mount accuracy are analyzed. Additionally several technologies are also analyzed to make laser pulses shot from ground stations to arrive in the LRO earth window. Measurement data of LRO laser ranging verified that these technologies could be implemented for one-way laser ranging of lunar spacecraft.