• Title/Summary/Keyword: space mission

Search Result 879, Processing Time 0.02 seconds

The Development of Performance Analysis Code for Conceptual Design of Jet Fighters (전투기의 개념설계를 위한 성능해석 프로그램 개발)

  • Kim, Taewoo;Choi, Hyunmin;Choi, Byungryul;Lee, Sungjin;Nam, Hwajin;Choi, Donghoon;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.404-414
    • /
    • 2013
  • In the conceptual design phase of jet fighters, the trade study is performed repeatedly for a selection of the baseline configuration. The automation of repeated trade study makes possible to select efficiently the baseline configuration. In this study, the performance analysis code was developed for the automation of trade study. The code was consists of the module of shape generation, the module of weight estimation, the module of mission performance analysis. 3D CAD Model can be generated by the module of shape generation and Weight can be estimated by using the empirical equation in the module of weight estimation. The module of mission performance analysis was able to calculate the mission performance about the arbitrary mission profile. In addition, the optimal mission performance can be calculated by using optimization method. By performing the validation, the code was confirmed to be able to apply to the conceptual design phase.

Experimental Validation of Multiple UAVs with Vector Field Guidance for SEAD(Suppression of Enemy Air Defense) (벡터필드 유도기법이 적용된 다수 무인기를 이용한 적 방공망 제압 임무의 실험적 검증)

  • Jung, Wooyoung;Kim, Ki-Duck;Lee, Seongheon;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.282-287
    • /
    • 2015
  • In modern warfare, the importance of SEAD(Suppression of Enemy Air Defense) mission is being emphasized. However, this mission runs the risk of hull damage or casualties of our friendly air forces. Because of these risks, research on the way of minimizing damages and enhancing mission capability is under active discussion. As a part of this research, SEAD mission planning with multiple UAVs has been covered using vector field guidance. This guidance method not only applies to various forms of flight path but also requires less computational power than other guidance methods. Therefore, in this paper, planning methods of SEAD mission for multiple UAVs using vector field guidance and experimental data from flight experiments regarding designed mission has been covered.

The VV&A Process Design for CMMS in consideration of Korean mission space characteristics (한국형 CMMS 개발 및 관리시스템의 VV&A 프로세스 설계)

  • Kim, Gyo-Seob;Lee, Jung-Man;Bae, Young-Min;Lee, Young-Hoon;Pyun, Jai-Jeong
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.189-198
    • /
    • 2010
  • Conceptual Model of the Mission Spaces(CMMS) is a first abstraction model of the military real world and serves as a knowledge(mission spaces) reference models for development, interoperability and reusability of defense modeling and simulation(M&S) systems, by capturing basic information about entities involved in any mission and their key actions and interactions. Therefore, the completeness of CMMS is the key to success for the quality of M&S systems based on it. To improve quality and credibility of CMMS, the Verification, Validation and Accreditation(VV&A) processes of CMMS is very important. This paper briefly describes the K-CMMS(Korean Conceptual Model of Mission Space) and the VV&A process.

Genetic algorithm-based scheduling for ground support of multiple satellites and antennae considering operation modes

  • Lee, Junghyun;Kim, Haedong;Chung, Hyun;Ko, Kwanghee
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.89-100
    • /
    • 2016
  • Given the unpredictability of the space environment, satellite communications are manually performed by exchanging telecommands and telemetry. Ground support for orbiting satellites is given only during limited periods of ground antenna visibility, which can result in conflicts when multiple satellites are present. This problem can be regarded as a scheduling problem of allocating antenna support (task) to limited visibility (resource). To mitigate unforeseen errors and costs associated with manual scheduling and mission planning, we propose a novel method based on a genetic algorithm to solve the ground support problem of multiple satellites and antennae with visibility conflicts. Numerous scheduling parameters, including user priority, emergency, profit, contact interval, support time, remaining resource, are considered to provide maximum benefit to users and real applications. The modeling and formulae are developed in accordance with the characteristics of satellite communication. To validate the proposed algorithm, 20 satellites and 3 ground antennae in the Korean peninsula are assumed and modeled using the satellite tool kit (STK). The proposed algorithm is applied to two operation modes: (i) telemetry, tracking, and command and (ii) payload. The results of the present study show near-optimal scheduling in both operation modes and demonstrate the applicability of the proposed algorithm to actual mission control systems.

Development of Kinematic Ephemeris Generator for Korea Pathfinder Lunar Orbiter (KPLO)

  • Song, Min-Sup;Park, Sang-Young;Kim, Youngkwang;Yim, Jo Ryeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.199-208
    • /
    • 2020
  • This paper presents a kinematic ephemeris generator for Korea Pathfinder Lunar Orbiter (KPLO) and its performance test results. The kinematic ephemeris generator consists of a ground ephemeris compressor and an onboard ephemeris calculator. The ground ephemeris compressor has to compress desired orbit propagation data by using an interpolation method in a ground system. The onboard ephemeris calculator can generate spacecraft ephemeris and the Sun/Moon ephemeris in onboard computer of the KPLO. Among many interpolation methods, polynomial interpolation with uniform node, Chebyshev interpolation, Hermite interpolation are tested for their performances. As a result of the test, it is shown that all the methods have some cases that meet requirements but there are some performance differences. It is also confirmed that, the Chebyshev interpolation shows better performance than other methods for spacecraft ephemeris generation, and the polynomial interpolation with uniform nodes yields good performance for the Sun/Moon ephemeris generation. Based on these results, a Kinematic ephemeris generator is developed for the KPLO mission. Then, the developed ephemeris generator can find an approximating function using interpolation method considering the size and accuracy of the data to be transmitted.

Flight Dynamics and Navigation for Planetary Missions in Korea: Past Efforts, Recent Status, and Future Preparations

  • Song, Young-Joo;Lee, Donghun;Bae, Jonghee;Kim, Young-Rok;Choi, Su-Jin
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.119-131
    • /
    • 2018
  • In spite of a short history of only 30 years in space development, Korea has achieved outstanding space development capabilities, and became the $11^{th}$ member of the "Space Club" in 2013 by launching its own satellites with its own launch vehicle from a local space center. With the successful development and operation of more than 10 earth-orbiting satellites since 1999, Korea is now rapidly expanding its own aspirations to outer space exploration. Unlike earth-orbiting missions, planetary missions are more demanding of well-rounded technological capabilities, specifically trajectory design, analysis, and navigation. Because of the importance of relevant technologies, the Korean astronautical society devoted significant efforts to secure these basic technologies from the early 2000s. This paper revisits the numerous efforts conducted to date, specifically regarding flight dynamics and navigation technology, to prepare for future upcoming planetary missions in Korea. However, sustained efforts are still required to realize such challenging planetary missions, and efforts to date will significantly advance the relevant Korean technological capabilities.

A New Era of Space Shuttle

  • Sun Kyu Kim
    • Journal of Astronomy and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 1985
  • The U.S. Space Shuttle represents the beginning of a new era in transportation and is the critical element in the industrialization of the near-Earth-space. Most of its flights are dedicated to reducing costs launching commercial satellites. However, it provides a microgravity environment for processing unique and improved materials which is generating great interest in both civilian and military sectors. The space shuttle is also the necessary step in establishing a permanent space station which could host materials analysis laboratories and commercial processing facilities. This paper reviews the different elements of the space shuttle transportation system, a typical mission scenario, and discusses current activities in materials processing in space.

  • PDF