A Silicon Charge Detector for the CREAM ULDB mission 김홍주¹, 현성윤², 민경욱², 박환배³, 김영진³, 김미영⁴, 박나희⁴, 양종만⁴, 박일흥⁴, 복정범⁴, 이재금⁴, 현효정⁴, 한지혜⁴, 손재현⁴, 선광일⁵, 남욱원⁵, 한원용⁵, 이무현⁶, 서은숙⁶ ¹연세대학교 물리학과, ²KAIST 물리학과, ³경복대학교 물리학과, ⁴이화여자대학교 물리학과, ⁵한국천문연구원, ⁶University of Maryland A Silicon Charge Detector (SCD) is designed and constructed for the CREAM experiment to provide a precision measurement of the charge of incident high energy cosmic ray particles. The goal of the CREAM is to understand the source and acceleration mechanism of the high energy cosmic ray particles. The payload is planned with an Ultra Long Duration Balloon mission. The silicon sensors are DC coupled PIN diode with 380 micron thickness. Each sensor is pixellated with 16 cells, 2.25 cm2 in area and the total coverage of SCD is 79 cm by 79 cm. We present the status of the SCD construction, including readout electronics and mechanical support structure, and the results of the radioactive source test as well as beam tests at CERN in Oct. 2002