• Title/Summary/Keyword: space experiment

Search Result 1,945, Processing Time 0.026 seconds

Korean Astronaut Program and Space Experiment (한국우주인 배출과 우주실험)

  • Kim, Youn-Kyu;Yi, So-Yeon;Ko, San;Kang, Sang-Wook;Lee, Joo-Hee;Choi, Gi-Hyuk
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.2
    • /
    • pp.99-108
    • /
    • 2008
  • This paper entirely explains the Korean astronaut program from astronaut selection to launch and return and introduces technology and results through this program in detail. The Korean astronaut program launched Nov. 2005 with the objectives to develop the manned space technology such as astronaut selection, training and space experiment and to disseminate concerns to the public about the science and space. In 2006 to select the Korean astronauts, the standards for selecting astronauts were set and then the selection processes from 1st stage to 4th stage were performed. In 2007, the 2 Korean astronauts took the astronaut training and the 18 domestic science experiments and 3 international experiments which the Korean astronaut, Dr. Yi, performed in ISS last April were developed. In April 2008, the Korean astronaut was transported to ISS by Soyuz in Baikonur in Kazakhstan and returned to the ground with performing the mission and space experiments. This paper will explain these processes as the above(astronaut's selection, training, space experiment, etc.) in detail.

  • PDF

Evaluation of SPACE Code Prediction Capability for CEDM Nozzle Break Experiment with Safety Injection Failure (안전주입 실패를 동반한 제어봉구동장치 관통부 파단 사고 실험 기반 국내 안전해석코드 SPACE 예측 능력 평가)

  • Nam, Kyung Ho
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.5
    • /
    • pp.80-88
    • /
    • 2022
  • The Korean nuclear industry had developed the SPACE (Safety and Performance Analysis Code for nuclear power plants) code, which adopts a two-fluid, three-field model that is comprised of gas, continuous liquid and droplet fields and has the capability to simulate three-dimensional models. According to the revised law by the Nuclear Safety and Security Commission (NSSC) in Korea, the multiple failure accidents that must be considered for the accident management plan of a nuclear power plant was determined based on the lessons learned from the Fukushima accident. Generally, to improve the reliability of the calculation results of a safety analysis code, verification is required for the separate and integral effect experiments. Therefore, the goal of this work is to verify the calculation capability of the SPACE code for multiple failure accidents. For this purpose, an experiment was conducted to simulate a Control Element Drive Mechanism (CEDM) break with a safety injection failure using the ATLAS test facility, which is operated by Korea Atomic Energy Research Institute (KAERI). This experiment focused on the comparison between the experiment results and code calculation results to verify the performance of the SPACE code. The results of the overall system transient response using the SPACE code showed similar trends with the experimental results for parameters such as the system pressure, mass flow rate, and collapsed water level in component. In conclusion, it can be concluded that the SPACE code has sufficient capability to simulate a CEDM break with a safety injection failure accident.

Design and Performance of an Automated Bioreactor for Cell Culture Experiments in a Microgravity Environment

  • Kim, Youn-Kyu;Park, Seul-Hyun;Lee, Joo-Hee;Choi, Gi-Hyuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.1
    • /
    • pp.81-89
    • /
    • 2015
  • In this paper, we describe the development of a bioreactor for a cell-culture experiment on the International Space Station (ISS). The bioreactor is an experimental device for culturing mouse muscle cells in a microgravity environment. The purpose of the experiment was to assess the impact of microgravity on the muscles to address the possibility of long-term human residence in space. After investigation of previously developed bioreactors, and analysis of the requirements for microgravity cell culture experiments, a bioreactor design is herein proposed that is able to automatically culture 32 samples simultaneously. This reactor design is capable of automatic control of temperature, humidity, and culture-medium injection rate; and satisfies the interface requirements of the ISS. Since bioreactors are vulnerable to cell contamination, the medium-circulation modules were designed to be a completely replaceable, in order to reuse the bioreactor after each experiment. The bioreactor control system is designed to circulate culture media to 32 culture chambers at a maximum speed of 1 ml/min, to maintain the temperature of the reactor at $36{\pm}1^{\circ}C$, and to keep the relative humidity of the reactor above 70%. Because bubbles in the culture media negatively affect cell culture, a de-bubbler unit was provided to eliminate such bubbles. A working model of the reactor was built according to the new design, to verify its performance, and was used to perform a cell culture experiment that confirmed the feasibility of this device.

DETERMINATION OF GLOBAL STABILITY OF THE SLOSH MOTION IN A SPACECRAFT VIA NUMERICAL EXPERIMENT (수치적 실험에 의한 위성 내부 유동체의 안정-불안정 영역 판별)

  • 강자영
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.4
    • /
    • pp.351-358
    • /
    • 2003
  • The global stability of the attitude motion of a spin-stabilized space vehicle is investigated by performing numerical experiment. In the previous study, a stationary solution and a particular resonant condition for a given model were found by using analytical method but failed to represent the system stability over parameter values near and off the stationary points. Accordingly, as an extension of the previous work, this study performs numerical experiment to investigate the stability of the system across the parameter space and determines stable and unstable regions of the design parameters of the system.

dSPACE를 이용한 유도전동기 벡터제어 시스템의 실시간 시뮬레이션

  • Park, Sang-Eun;Lee, Byung-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.368-371
    • /
    • 2003
  • In this paper, we present a way that can implement the vector control Algorithm of induction motor and PWM signal generation on the condition Matlab/Simulink. The overall system model is designed by Simulink toolbox for vector control in induction motor. and then implement experiment with the DS1103 board of dSPACE. Although we are not coding the system, it is capable of doing simulation and experiment simultaneously. That is why Matlab and dSPACE board compiler can generate the "*.c" and "*.obj" files on the designed system automatically. After considering about hardware structure and driving system in DS1103 board. we verify the availability of proposed method through making a comparison/analysis between simulation and experiment.

  • PDF

COronal Diagnostic EXperiment (CODEX)

  • Bong, Su-Chan;Kim, Yeon-Han;Choi, Seonghwan;Cho, Kyung-Suk;Newmark, Jeffrey S;Gopalswamy, Natchimuthuk;Gong, Qian;Reginald, Nelson L.;Cyr, Orville Chris St.;Viall, Nicholeen M.;Yashiro, Seiji;Thompson, Linda D.;Strachan, Leonard
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.82.2-82.3
    • /
    • 2019
  • Korea Astronomy and Space Science Institute (KASI), in collaboration with the NASA Goddard Sparce Flight Center (GSFC), will develop a next generation coronagraph for the International Space Station (ISS). COronal Diagnostic EXperiment (CODEX) uses multiple filters to obtain simultaneous measurements of electron density, temperature, and velocity within a single instrument. CODEX's regular, systematic, comprehensive dataset will test theories of solar wind acceleration and source, as well as serve to validate and enable improvement of space-weather/operational models in the crucial source region of the solar wind. CODEX subsystems include the coronagraph, pointing system, command and data handling (C&DH) electronics, and power distribution unit. CODEX is integrated onto a standard interface which provides power and communication. All full resolution images are telemeters to the ground, where data from multiple images and sequences are co-added, spatially binned, and ratioed as needed for analysis.

  • PDF

TOWARD A NEXT GENERATION SOLAR CORONAGRAPH: DIAGNOSTIC CORONAGRAPH EXPERIMENT

  • Cho, Kyung-Suk;Yang, Heesu;Lee, Jae-Ok;Bong, Su-Chan;Kim, Jihun;Choi, Seonghwan;Park, Jongyeob;Cho, Kyuhyoun;Baek, Ji-Hye;Kim, Yeon-Han;Park, Young-Deuk
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.4
    • /
    • pp.87-98
    • /
    • 2020
  • The Korea Astronomy and Space Science Institute (KASI) has been developing a next-generation coronagraph (NGC) in cooperation with NASA to measure the coronal electron density, temperature, and speed simultaneously, using four different optical filters around 400 nm. KASI organized an expedition to demonstrate the coronagraph measurement scheme and the instrumental technology during the 2017 total solar eclipse (TSE) across the USA. The observation site was in Jackson Hole, Wyoming, USA. We built an eclipse observation system, the Diagnostic Coronal Experiment (DICE), composed of two identical telescopes to improve the signal-to-noise ratio. The observation was conducted at four wavelengths and three linear polarization directions in the limited total eclipse time of about 140 seconds. We successfully obtained polarization data for the corona but we were not able to obtain information on the coronal electron temperature and speed due to the low signal-to-noise ratio of the optical system and strong emission from prominences located at the western limb. In this study, we report the development of DICE and the observation results from the eclipse expedition. TSE observation and analysis with our self-developed instrument showed that a coronagraph needs to be designed carefully to achieve its scientific purpose. We gained valuable experience for future follow-up NASA-KASI joint missions: the Balloon-borne Investigation of the Temperature and Speed of Electrons in the Corona (BITSE) and the COronal Diagnostic EXperiment (CODEX).

DESIGN AND REALIZATION OF UNIVERSAL DATA INTERFACE SIMULATOR FOR INTERNATIONAL SPACE STATION (국제우주정거장 범용 데이터인터페이스 시뮬레이터 설계 및 검증)

  • Kim, Jong-Woo;Seo, Suk-bae;Kim, Kyung-Tae
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.1
    • /
    • pp.59-68
    • /
    • 2005
  • KARI studied data interface of Space Applications for developing Space Experimental Instrument in International Space Station, designed, and manufactured the UDIS (International Space Station Universal Data Interface simulator) according to requirements of the data interface. This paper explains the design and implementation of UDIS for space application. UDIS is the instrument which simulate to interface the data from ISS to experiment module, payload and habitation module and use the development of a experiment system in the space. This simulator will be used to the GSE (Ground Support Equipment) for test of experiment system. By realization of the simulator, we ensure data interface skills for a manned-space data communication system.

Features of Attention to Space Structure of Spacial Composition in Women's Shop - Targeting the Circulation Line of Department Store - (여성의류 매장 공간의 구도에 나타난 공간구성의 주의집중 특성 - 백화점 매장의 순회동선을 대상으로 -)

  • Choi, Gae-Young;Son, Kwang-Ho
    • Korean Institute of Interior Design Journal
    • /
    • v.26 no.2
    • /
    • pp.3-12
    • /
    • 2017
  • This study has analyzed the features of attention to spacial composition seen in "Seeing ${\leftrightarrow}$ Seen" Correlation of continuous move in the space. The eye-tracking was employed for collecting the data of attention features to the space so that the correlation between visual perception and space could be estimated through the attention features to the difference between spacial composition and display. First, it was confirmed that the attention features varied according to the structure of shops and the exposure degree of selling space, which revealed that, while causing the customers' less attention to both sides of shops, the vanishing-point structure characteristically made their eyes focused on the central part. Second, their initial observation activities were found to be active at the height of their eyes. Third, 10 images were selected as objects for continuous experiment. There was a concern that the central part of each image would be paid intense attention to during the initial observation, but only two of those were found to be so. Fourth, there had been a study result of eye-tracking experiment that the attention had been concentrated on the central part of the image first seen. This study, however, revealed that such phenomenon is limited to the first image. Accordingly, it is necessary to draw up such method for ensuring reliability in order to use the data acquired from any eye-tracking experiment as exclusion of the initial attention time to the first image or of unemployment of the initial image-experiment to analysis.

The Optimal Letter Spacing and Line Spacing of Korean on the Visual Display (VDT 화면에서의 한글 자간간격과 행간간격에 관한 연구)

  • 황우상;부진후;이동춘
    • Proceedings of the ESK Conference
    • /
    • 1998.04a
    • /
    • pp.161-166
    • /
    • 1998
  • In this study, the optimum criteria of space between the lines and the letters which could largely affect the legibility were found by the experiment and were presented as guidelines to design Korean VDT screens. Since the experiment was designed to test the human performance based on the VDT screen design, searching speed (S.S) and error rate (E) were used as the criteria of performance, and CFF value was measured to evaluate user's visual fatigue. The EOG value was also measured for the visual restriction during the experiment for the space between the lines and letters.

  • PDF