• Title/Summary/Keyword: space environment simulation

Search Result 578, Processing Time 0.022 seconds

Deadlock-free Routing of an ACV in Accelerated Motion (가감속을 고려한 교착없는 AGV 주행경로설정)

  • Choe, Ri;Park, Tae-Jin;Ryu, Kwang-Ryel
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.387-392
    • /
    • 2006
  • In the environment where AGVs(Automated Guided Vehicles) operate concurrently in limited space, collisions. deadlocks, and livelocks which have negative effect on the productivity of AGVs occure more frequently. The accelerated motion of an AGV is also the factor that make the AGV routing more difficult because the accelerated motion makes it difficult to estimate the vehicle's exact travel time. In this study, we propose methods of avoiding collisions, deadlocks, and livelocks using OAR(Occupancy Area Reservation) table, and selecting best route by estimating the travel time of an AGV in accelerated motion. A time-driven simulation validated the effectiveness of the proposed methods.

  • PDF

Performance of Spectrum Sensing for Cognitive Radio Systems with ITS Applications (지능형 교통 시스템 적용을 위한 인지무선시스템의 스펙트럼 센싱 성능분석)

  • Lee, So-Young;Kim, Eun-Cheol;Kim, Jin-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.3
    • /
    • pp.51-58
    • /
    • 2010
  • According to dramatic increase of wireless communication demand, more spectrum resources are needed to support considerable and various wireless services, so cognitive radio(CR) was proposed to reuse unused frequency efficiently. Also, FCC revises its policies regarding the usage of the TV white spaces by unlicensed users. CR is an intelligent wireless communication system that is aware of the radio environment and is capable of adapting its operation to the statistical variations. Spectrum sensing is the key task of the CR systems. However, since spectrum sensing performance changes according to the received signal that is received various geography environment, regional characteristics are considered to estimate the path-loss. Therefore, for more accurate analysis and simulation, we demonstrate the spectrum sensing performance of CR system by various method applying Okumura-hata propagation model.

Performance Improvement of STBC-OFDM System with Advanced Transmit Diversity in Mobile Communications Environment (이동통신 환경에서 개선된 송신 다이버시티를 이용하는 STBC-OFDM 시스템의 성능 개선)

  • 김장욱;양희진;오창헌;조성준
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.5
    • /
    • pp.444-450
    • /
    • 2004
  • In mobile communications environment, STBC-OFDM(Space Time Block Code-Orthogonal Frequency Division Multiplexing) system with transmit diversity obtains the MRRC(Maximal Ratio Receiver Combining) diversity gain in time-invariant channel between two received symbols. But in time-variant channel, due to the interference between received symbols, MRRC diversity gain cant be obtained. So, when the mobile device with transmit diversity moves in high speed, the scheme to reduce the performance degradation due to the interference is needed. In this paper, we propose the receiver architecture with advanced transmit diversity, which improves the performance of STBC-OFDM system. The proposed architecture obtains the diversity gain without the change of transmit bandwidth at the receiver with the interference canceller using ZF(Zero Forcing) algorithm. Simulation results show performance improvement as doppler shift is increasing.

GPS Carrier Phase Fault Detection with Consideration on User Dynamics (사용자 다이나믹을 고려한 GPS 반송파 고장검출)

  • Won, Dae Hee;Ahn, Jongsun;Sung, Sangkyung;Lee, Eunsung;Heo, Moon-Beom;Lee, Young Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1048-1054
    • /
    • 2012
  • This paper presents a Carrier phase fault detection (FD) method for GPS RTK (Global Positioning System Real Time Kinematic) in dynamic environment. There are various error sources in dynamic environment and these errors decrease the reliability of FD results. Due to the reason, Carrier phase measurements are separated into satellite induced signal, user induced signal and other remaining errors. Especially the user-induced signal is computed by user dynamic which is estimated by time-differenced Carrier phase (TDCP) and Doppler shift. TDCP makes it possible to avoid integer ambiguity resolution. Computer simulation is conducted to verify the suggested method. By applying impulse, step and ramp faults, the FD performance is analyzed.

Longitudinal Control Using Linear Quadratic Tracker with Integrator and Handling Qualities for Unmanned Rotorcraft (LQTI를 이용한 회전익 무인항공기 종방향 조종성 평가를 위한 제어법칙 설계 및 조종성 평가)

  • Lee, Changmin;Kim, Sungkeun;Jo, Seunghwan;Ra, Chunggil;Kim, Ki-joon;Suk, Jinyoung;Kim, Seungkeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.393-400
    • /
    • 2017
  • A virtual simulation test program to carry out the handling qualities of unmanned Rotorcraft has developed by using the MATLAB GUIDE(Graphic User Interface Development Environment). The handling quality evaluation program based on ADS-33E contributes to design the flight control system and to evaluate handling qualities. In addition, Linear Quadratic Tracker with Integrator(LQTI) attitude controller based on Linear Quadratic Regulator(LQR) for to rotorcraft BO-105C and the effects of the handling qualities is analyzed change to weight matrices of the Q and R.

Cloudification of On-Chip Flash Memory for Reconfigurable IoTs using Connected-Instruction Execution (연결기반 명령어 실행을 이용한 재구성 가능한 IoT를 위한 온칩 플래쉬 메모리의 클라우드화)

  • Lee, Dongkyu;Cho, Jeonghun;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.2
    • /
    • pp.103-111
    • /
    • 2019
  • The IoT-driven large-scaled systems consist of connected things with on-chip executable embedded software. These light-weighted embedded things have limited hardware space, especially small size of on-chip flash memory. In addition, on-chip embedded software in flash memory is not easy to update in runtime to equip with latest services in IoT-driven applications. It is becoming important to develop light-weighted IoT devices with various software in the limited on-chip flash memory. The remote instruction execution in cloud via IoT connectivity enables to provide high performance software execution with unlimited software instruction in cloud and low-power streaming of instruction execution in IoT edge devices. In this paper, we propose a Cloud-IoT asymmetric structure for providing high performance instruction execution in cloud, still low power code executable thing in light-weighted IoT edge environment using remote instruction execution. We propose a simulated approach to determine efficient partitioning of software runtime in cloud and IoT edge. We evaluated the instruction cloudification using remote instruction by determining the execution time by the proposed structure. The cloud-connected instruction set simulator is newly introduced to emulate the behavior of the processor. Experimental results of the cloud-IoT connected software execution using remote instruction showed the feasibility of cloudification of on-chip code flash memory. The simulation environment for cloud-connected code execution successfully emulates architectural operations of on-chip flash memory in cloud so that the various software services in IoT can be accelerated and performed in low-power by cloudification of remote instruction execution. The execution time of the program is reduced by 50% and the memory space is reduced by 24% when the cloud-connected code execution is used.

Investigation of Drop Test Method for Simulation of Low Gravity Environment (저중력 환경 모사를 위한 낙하 시험 방법 연구)

  • Baek, Seungwhan;Yu, Isang;Shin, Jaehyun;Park, Kwangkun;Jung, Youngsuk;Cho, Kiejoo;Oh, Seunghyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.78-87
    • /
    • 2021
  • Understanding the liquid propellant transport phenomena in low gravity is essential for developing Korea Space Launch Vehicle (KSLV) upper-stage for the diversity of space missions. A low-gravity environment can be simulated via the free-fall method on the ground; however, the air drag is inevitable. To reduce air resistance during free fall, air-drag shield is usually adopted. In this study, the free-fall method was performed with an air-drag shield from a 7-m height tower. The acceleration of a falling object was measured and analyzed. Low gravity below 0.01 g was achieved during 1.2-s free fall with the air-drag shield. The minimum gravitational acceleration value at 1.2-s after free fall was ±0.005 g, which is comparable to the value obtained from Bremen drop tower experiments, ±0.002 g. A prolonged free-fall duration may enhance the low-gravity quality during the drop tower experiments.

A Study on the Implementation of Microscopic Traffic Simulation Model by Using GIS (GIS를 이용한 미시적 수준의 교통모형 구현에 관한 연구)

  • Kim, Byeongsun
    • Spatial Information Research
    • /
    • v.23 no.4
    • /
    • pp.79-89
    • /
    • 2015
  • This study aims to design and implement a traffic model that can simulate the traffic behavior on the microscopic level by using the GIS. In the design of the model, the vehicle in the simulation environment recognizes the GIS road centerline data as road network data reflecting number of lanes, speed limit and so on. In addition, the behavior model was designed by dividing functions into the environmental perception model, time headway distribution model, car following model, and lane changing model. The implemented model was applied to Jahamun-road of Jongno-gu district to verify the accuracy of the model. As a result, the simulation results on the Jahamun-road had no great error compared with the actual observation data. In the aspect of usability of model, it is judged that this model will be able to effectively contribute to analysis of amount of carbon emission by traffic, evaluation of traffic flow, plans for location of urban infrastructure and so on.

Speed, Depth and Steering Control of Underwater Vehicles with Four Stem Thrusters - Simulation and Experimental Results (네 대의 주 추진기를 이용한 무인잠수정의 속도, 심도 및 방위각 제어 - 시뮬레이션 및 실험)

  • JUN BONG-HUAN;LEE PAN-MOOK;LI JI-HONG;HONG SEOK-WON;LEE JIHONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.67-73
    • /
    • 2005
  • This paper describes depth, heading and speed control of an underwater vehicle that has four stern thrusters of which forces are coupled in the diving and, steering motion, as well as the speed of the vehicle. The optimal linear quadratic controller is designed based on a linearized- state space model, developed by combining the dynamic equations of speed, steering and diving motion. The designed controller gives provides an optimal thrust distribution, minimizing the given performance index to control speed, depth and heading simultaneously. To validate the performance of the controller, a simulation and tank-test are carried out with DUSAUV (Dual Use Semi-Autonomous Underwater Vehicle), developed by KORDI as a test-bed for testing new underwater technologies. Optimal gains of the controller are tuned, using a computer simulation environment with a nonlinear 6-DOF numerical DUSAUV model, developed by PMM (Planner Motion Mechanism) test. To verify the performance of the presented controller in experiment, a tank-test with DUSAUV is carried out in the ocean engineering basin in KORDI. The experimental results are also compared with the simulation results to investigate the accordance of the numerical and the real mode.

A Study on Fire Dynamics Simulation on the Arrangement of Aero System in the Residential (주거공간 에어로 시스템 배치에 관한 화재시뮬레이션 연구)

  • Choi, Doo Chan;Ko, Min Hyeok;Lee, Doo Hee;Park, Kye Won;Choi, Jeong Min;Lee, Yong Kwon;Kim, Gil Nam;Sun, Kyoung Soo
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.890-896
    • /
    • 2021
  • Purpose: The called Aero System is important to find the well detected place in the livingroom or bedroom so, it needs to the confirmation through the Fire Dynamics Simulation Method: A fire simulation of a residential space of 59 m2 was performed, and in order to find the point where the fire environment was exposed quickly, measuring points were installed at 0.6 m and 1.5 m in height for each bedroom and living room, and the point where the fire was quickly detected was confirmed. Result: It was confirmed that the temperature and carbon monoxide sensor set at a point of 1.5 m was quickly detected at the reference value. Conclusion: The Fire detection would be relatively quick if the product in which the fire extinguishing module and the AQI module were separated was installed on the wall.