• Title/Summary/Keyword: space diversity

Search Result 751, Processing Time 0.023 seconds

A Study on A Mathematical Formulation of Protection Ratio and Its Calculation for Fixed Radio Relay System with Diversity (다이버시티를 갖는 고정 무선 중계 시스템에 대한 보호비의 수학적 표현과 계산에 대한 연구)

  • Suh Kyoung-Whoan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.4 s.107
    • /
    • pp.358-367
    • /
    • 2006
  • In this paper, a mathematical formulation of protection ratio and its calculation method are suggested for a radio relay system with diversity techniques. The analysis of protection ratio and its physical meaning have been performed for the space or frequency diversity system, and in particular protection ratios are reviewed in terms of the parameters of diversity improvement factor, which comprises antenna gain, separation distance between antennas, frequency and its difference between carriers, and distance. As one of simulated results, the co-channel protection ratio of 60 dB is obtained for the space diversity system regarding 6.2 GHz, 60 km, 64-QAM, and 25 m between antennas, which gives 15 dB less than the co-channel protection ratio of the non-space diversity system. In addition, the co-channel protection ratio for the frequency diversity system gives 64 dB in case of frequency offset of 0.5 GHz under the same conditions as the space diversity system, which brings about 11 dB less than the co-channel protection ratio of non-frequency diversity system. In consequency, it is interesting to note that the space diversity system is less sensitive to interference in comparison to the frequency diversity system and provides better quality of service for a given interference.

BICM Applied to Improved SOSTBC (개선된 SOSTBC 적용된 BICM)

  • Park, Jong-Chul;Kim, Chang-Joong;Lee, Ho-Kyoung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.3
    • /
    • pp.34-39
    • /
    • 2008
  • In this paper, we propose a bit-interleaved coded modulation (BICM) a lied to improved super-orthogonal space-time block code(SOSTBC). The proposed system achieves a greater diversity gain than that of super-orthogonal space-time trellis code (SOSTTC) with similar decoding complexity. Since, using the improved SOSTBC, the bit diversity carl be full diversity of SOSTBC. In contrast, BICM applied to Jafarkhani's SOSTBC is difficult to achieve a greater diversity gain than that of SOSTTC, because every bit diversity of the system is 1.

Performance Analysis of Noncoherent Transmit Diversity System over Correlated Rayleigh Fading Channel (상관된 레일레이 페이딩 채널에서 비동기 송신 다이버시티 시스템 성능해석)

  • 여민기;한영열
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.2
    • /
    • pp.208-216
    • /
    • 2001
  • Signal Fading due to multipath propagation severely impairs the performance of high-speed mobile communication systems. Effective diversity scheme for fading channel is STTD (Space Time Transmitter Diversity) method. This scheme is very simple and using 2 transmit antennas and 1 receive antenna provides a diversity order of two[1],[2]. In this paper, we derive the new probability density function of the envelope of the received signal over correlated Rayleigh fading channel. Using the new pdf of the envelope we analyze the performance of noncoherent M-ary FSK, DPSK and ASKSTTD (Space Time Transmitter Diversity) a system on correlated Rayleigh fading channel.

  • PDF

Space-Time Diversity Relaying Strategy using Cooperative Communication Technique (협력 통신 기법을 이용한 시공간 다이버시티 중계 전략)

  • Kim, Eun-Ki;Park, Noe-Yoon;Lee, Kwan-Seob;Kim, Young-Ju
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.4
    • /
    • pp.65-71
    • /
    • 2009
  • In this paper a new space-time diversity relaying strategy using cooperative communication technique is proposed. More than one relaying terminals are included in one cooperative group to share their state information, such as frame error rate and channel state information. The best terminals are selected to send bit information using space-time diversity relay system. An implementation for the proposed scheme is also presented using the TDMA cooperative protocol. The resulting receive signal to transmit signal ratio and computer simulation demonstrate that the proposed strategy outperforms the conventional cooperative system.

STF-OFDM Transmission Scheme with Frequency Diversity (주파수 다이버시티를 갖는 STF-OFDM 전송 기법)

  • 박상순;황호선;백흥기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2C
    • /
    • pp.206-212
    • /
    • 2004
  • In this paper, we propose a STF(Space-Time-Frequency) coded OFDM(Orthogonal Frequency Division Multiplexing) transmission scheme as an attractive solution for high bit rate data transmission in a multipath fading environment. STBC(Space-Time Block Coding) has been proposed as a simple diversity scheme using two transmit antennas. Also ST-OFDM(Space-Time Block Coded OFDM) and SF-OFDM(Space-Frequency Block Coded OFDM) transmission scheme, that the STBC is applied to the OFDM, has been proposed. In this paper, we propose STF-OFDM transmission scheme that to coded in time, space and frequency domain. The STF-OFDM transmission scheme that we propose in this paper is the way to improve a performance of conventional ST-OFDM, by using frequency diversity.

On Maximum Diversity Order over Doubly-Selective MIMO-OFDM Channes

  • Yang Qinghai;Kwak Kyung Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7A
    • /
    • pp.628-638
    • /
    • 2005
  • The analysis of maximum diversity order and coding gain for multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems over time-and frequency-selective (or doubly-selective) channels is addressed in this paper. A novel channel time-space correlation function is developed given the spatially correlated doubly-selective Rayleigh fading channel model. Based on this channel-model assumption, the upper-bound of pairwise error probability (PEP) for MIMO-OFDM systems is derived under the maximum likelihood (ML) detection. For a certain space-frequency code, we quantify the maximum diversity order and deduce the expression of coding gain. In this wort the impact of channel time selectivity is especially studied and a new definition of time diversity is illustrated correspondingly

A Study on the Propagation Characteristics of Polarization Diversity in rural and Residential Areas (교외 및 주거 지역에서의 편파 다이버시티 전파전파 특성 연구)

  • 임종태;김성진;유봉국
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.3
    • /
    • pp.369-377
    • /
    • 1998
  • In this paper, we performed the comparisons between polarization diversity using dual polarization antennal which has $\pm45^{\circ}$slanted linear polarization characteristics and conventional space diversity in rural and residential areas. The analysis was done by evaluating the diversity gain improvement and cross correlation coefficients between two received signals through each diversity branch. From the results, we could confirmed that space diversity has bigger diversity gain than polarization diversity by 1~2 dB, and there is a little difference of $\pm0.1$ in cross correlation coefficients by analyzing CDF under portable mobile phone environments.

  • PDF

Turbo-coded STC schemes for an integrated satellite-terrestrial system for cooperative diversity (협동 다이버시티 이득을 위한 위성-지상간 통합망에서의 터보 부호화된 시공간 부호)

  • Park, Un-Hee;Kim, Soo-Young;Kim, Hee-Wook;Ahn, Do-Seob
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1A
    • /
    • pp.62-70
    • /
    • 2010
  • In this paper, we evaluate the performance of various diversity techniques which can contribute to provide efficient multimedia broadcasting services via hybrid/integrated satellite and terrestrial network. Space-time coding (STC) can achieve the diversity gain in a multi-path environment without additional bandwidth requirement. Recent study results reported that satellite systems can achieve high diversity gains by appropriate utilization of STC and/or forward error correction schemes. Based on these previous study results, we present various cooperative diversity techniques by combining STC and rate compatible turbo codes in order to realize the transmit diversity for the mobile satellite system. The satellite and several terrestrial repeaters operate in unison to send the encoded signals, so that receiver may realize diversity gain. The results demonstrated in this paper can be utilized in future system implementation.

A Simple If In-Phase Combiner and Its Performance for Point-to-Point Radio Relay System with Space Diversity

  • Suh Kyoung-Whoan
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • The implementation of a simple analog in-phase combiner is presented for a high capacity radio relay system with space diversity. It provides good performance in terms of simple hardware and easy control, and measured results are in good agreement with simulated ones. To suggest practical applications, signatures with/without diversity are measured for STM-1 signal of 64-QAM radio relay system combined with a 13-tap equalizer, and they provided more than 25 dB fade depth at 10$^{-3}$ BER under the frequency selective fading condition.

An Efficient Scheme to Achieve Differential Unitary Space-Time Modulation on MIMO-OFDM Systems

  • Liu, Shou-Yin;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.565-574
    • /
    • 2004
  • Differential unitary space-time modulation (DUSTM) has emerged as a promising technique to obtain spatial diversity without intractable channel estimation. This paper presents a study of the application of DUSTM on multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems with frequency-selective fading channels. From the view of a correlation analysis between subcarriers of OFDM, we obtain the maximum achievable diversity of DUSTM on MIMO-OFDM systems. Moreover, an efficient implementation strategy based on subcarrier reconstruction is proposed, which transmits all the signals of one signal matrix in one OFDM transmission and performs differential processing between two adjacent OFDM blocks. The proposed method is capable of obtaining both spatial and multipath diversity while reducing the effect of time variation of channels to a minimum. The performance improvement is confirmed by simulation results.

  • PDF