• Title/Summary/Keyword: space coordinate system

Search Result 314, Processing Time 0.022 seconds

General Linearly Constrained Broadband Adaptive Arrays in the Eigenvector Space

  • Chang, Byong Kun
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.2
    • /
    • pp.73-78
    • /
    • 2017
  • A general linearly constrained broadband adaptive array is examined in the eigenvector space with respect to the optimal weight vector and the adaptive algorithm. The optimal weight vector and the general adaptive algorithm in the eigenvector space are obtained by eigenvector matrix transformation. Their operations are shown to be the same as in the standard coordinate system except for the relevant transformed vectors and matrices. The nulling performance of the general linearly constrained broadband adaptive array depends on the gain factor such that the constraint plane is shifted perpendicularly to the origin by an increase in the gain factor. The general linearly constrained broadband adaptive array is observed to perform better than a conventional linearly constrained adaptive array in a coherent signal environment, while the former performs similarly to the latter in a non-coherent signal environment.

NC Milling Productivity Incensement by Short Milling Tool Setting Method (NC 밀링에서 짧은 공구설치 방법으로 생산성 향상)

  • Kim, Su-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.60-68
    • /
    • 2008
  • The tool overhang length affects tool deflection and chatter that should be reduced for machined surface quality, productivity and long tool lift. The shortest tool setting algorithm that uses a safe space is proposed and applied with simulation software in NC machining. The safe space in the coordinate fixed in the tool is computed by the virtual machining system that simulates NC machining by stock model, tool model and NC code. The optimal tool assembly that has largest diameter and shortest length is possible using the safe space. This algorithm has been applied over fifty companies for safe and rigid tool setting. The collision accident between holder and stock was reduced from 3 to 0 a year and the productivity was incensed about 15% by using faster feed rate acceptable for shorten tool length.

Modeling and Simulation of Aircraft Motion on the Ground: Part I. Derivation of Equations of Motion

  • Ro, Kapseong;Lee, Haechang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.28-43
    • /
    • 2001
  • Developed in these two series of paper is a complex dynamic model representing the motion of aircraft on the ground and a computer program for numerical simulation. The first part of paper presents the theoretical derivation of equations of motion of the landing gear system based on the physical principle. Developed model is 'structured' in the sense that the undercarriage system is regarded as an assembly of strut, tire, and wheel, where each component is modeled by a separate module. These modules are linked with two external modules-the aircraft and the runway characteristics-to carry out dynamic analysis and numerical simulation of the aircraft motion on the ground. Three sets of coordinate system associated with strut, wheel/tire and runway are defined, and external loads to each component and response characteristics are examined. Lagrangian formulation is used to derive the undercarriage equations of motion relative to the moving aircraft, and the resultant forces and moments from the undercarriage are transformed to aircraft body axes.

  • PDF

Plant.Green.Living Environment -Urban Construction and Establishment of Green Space in Kunming-

  • Cheng, Hai-Lan
    • Journal of the Korean Institute of Landscape Architecture International Edition
    • /
    • no.1
    • /
    • pp.131-134
    • /
    • 2001
  • Green and plants, as it symbol the life and depute the nature, always give human an easy comfort psychologically. The paper is a brief analysis to the idea frame of urban construction and reform of Kunming through our practice about ten years. On which three main principles should be carefully considered. One is that the green-space composed of plant system is of the important infrastructure of a modern city as it can not be instead of by any other factor in the ecological system of the city. The other is that in the course of planning and construction the local feature as well as its culture tradition in history should be pied more attention. In order to create a distinguish character of itself the third may be more important that to coordinate each key elements of it such as green, water, light, building, road, etc., to get a harmonious sphere of human and nature. A modern city should be a green city in which nature and man co-exist harmoniously.

  • PDF

A Geographic Distributed Hash Table for Virtual Geographic Routing in MANET (MANET에서 가상 위치 기반 라우팅을 위한 지역 분산 해쉬 테이블 적용 방법)

  • Ko, Seok-Kap;Kim, Young-Han
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.58-65
    • /
    • 2008
  • This paper presents a new geographic distributed hash table (GDHT) for MANETs or Mesh networks, where virtual geographic protocol is used. In previous wort GDHT is applied to a network scenario based on two dimensional Cartesian coordinate system. Further, logical data space is supposed to be uniformly distributed. However, mobile node distribution in a network using virtual geographic routing is not matched to data distribution in GDHT. Therefore, if we apply previous GDHT to a virtual geographic routing network, lots of DHT data are probably located at boundary nodes of the network or specific nodes, resulting in long average-delay to discover resource (or service). Additionally, in BVR(Beacon Vector Routing) or LCR(Logical Coordinate Routing), because there is correlation between coordinate elements, we cannot use normal hash function. For this reason, we propose to use "geographic hash function" for GDHT that matches data distribution to node distribution and considers correlation between coordinate elements. We also show that the proposed scheme improves resource discovery efficiently.

Three-Dimensional Sheet Modeling Using Relative Coordinate (상대 좌표를 이용한 종이류 모델링 기법)

  • Cho Heui Je;Bae Dae Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.247-252
    • /
    • 2005
  • This research presents a three-dimensional modeling technique for a flexible sheet. A relative coordinate formulation is used to represent the kinematics of the sheet. The three-dimensional flexible sheet is modeled by multi-rigid bodies interconnected by out-of-plane joints and plate force elements. A parent node is designated as a master body and is connected to the ground by a floating joint to cover the rigid motion of the flexible sheet in space. Since the in-plane deformation of a sheet such as a paper and a film is relatively small, compared to out-of-plane deformation, only the out-of-plane deformation is accounted for in this research. The recursive formulation has been adopted to solve the equations of motion efficiently. An example is presented to show the validity of the proposed method.

A Dynamic Response Analysis of Tension Leg Platforms in Waves (I) (인장계규식 해양구조물의 동적응답해석(I))

  • 구자삼;김진하;이창호
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.161-172
    • /
    • 1995
  • A numerical procedure is described fro predicting the motion and structural responses of tension leg platforms(TLPs) in waves. The developed numerical approach is based on a combination of a three dimensional source distribution method and the dynamic response analysis method, in which the superstructure of TLPs is assumed flexible instead of the rigid body assumption used in tow-step analysis method. Both the hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural whole structure are formulated using element-fixed coordinate systems which have the origin at the node of the each hull element and move parallel to a space-fixed coordinate system. Numerical results are compared with the experimental and numerical ones, which are obtained in the literature, concerning the motion and structural responses of a TLP in waves. The results of comparison confirmed the validity of the proposed approach.

  • PDF

A Dynamic structural response analysis of tension leg platforms in current and waves (조류와 파랑 중에서의 TLP의 동적구조응답해석)

  • Lee, S.C.;Goo, J.S.;Ha, Y.R.;Jo, H.J.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.65-71
    • /
    • 2012
  • A numerical procedure is described for predicting the dynamic structural responses of tension leg platforms(TLPs) in current and waves. The developed numerical approach is based on a combination of the three dimensional source distribution method and the dynamic structural analysis method, in which the superstructure of the TLPs is assumed to be flexible instead of rigid. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in the dynamic structural analysis. The equations of motion of a whole structure are formulated using element-fixed coordinate systems which have the origin at the nodes of the each hull element and move parallel to a space-fixed coordinate system. The dynamic structural responses of a TLP were analyzed in the case of including the current or not including the one in waves and the effects of current on the TLP were investigated.

Forced vibration of the hydro-elastic system consisting of the orthotropic plate, compressible viscous fluid and rigid wall

  • Akbarov, Surkay D.;Huseynova, Tarana V.
    • Coupled systems mechanics
    • /
    • v.8 no.3
    • /
    • pp.199-218
    • /
    • 2019
  • This paper studies the forced vibration of the hydro-elastic system consisting of the anisotropic (orthotropic) plate, compressible viscous fluid and rigid wall within the scope of the exact equations and relations of elastodynamics for anisotropic bodies for describing of the plate motion, and with utilizing the linearized exact Navier-Stokes equations for describing of the fluid flow. For solution of the corresponding boundary value problem it is employed time-harmonic presentation of the sought values with respect to time and the Fourier transform with respect to the space coordinate on the coordinate axis directed along the plate length. Numerical results on the pressure acting on the interface plane between the plate and fluid are presented and discussed. The main aim in this discussion is focused on the study of the influence of the plate material anisotropy on the frequency response of the mentioned pressure. In particular, it is established that under fixed values of the shear modulus of the plate material a decrease in the values of the modulus of elasticity of the plate material in the direction of plate length causes to increase of the absolute values of the interface pressure. The numerical results are presented not only for the viscous fluid case but also for the inviscid fluid case.

Precise Orbit Determination of GRACE-A Satellite with Kinematic GPS PPP

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Yoo, Sung-Moon;Jo, Jung-Hyun;Lee, Sang-Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.59-64
    • /
    • 2012
  • Precise Point Positioning (PPP) has been widely used in navigation and orbit determination applications as we can obtain precise Global Positioning System (GPS) satellite orbit and clock products. Kinematic PPP, which is based on the GPS measurements only from the spaceborne GPS receiver, has some advantages for a simple precise orbit determination (POD). In this study, we developed kinematic PPP technique to estimate the orbits of GRACE-A satellite. The comparison of the mean position between the JPL's orbit product and our results showed the orbit differences 0.18 cm, 0.54 cm, and 0.98 cm in the Radial, in Along-track, and Cross-track direction respectively. In addition, we obtained the root mean square (rms) values of 4.06 cm, 3.90 cm, and 3.23 cm in the satellite coordinate components relative to the known coordinates.