• Title/Summary/Keyword: space VLBI

Search Result 253, Processing Time 0.025 seconds

THE AUTOMATIC CALIBRATION OF KOREAN VLBI NETWORK DATA

  • HODGSON, JEFFREY A.;LEE, SANG-SUNG;ZHAO, GUANG-YAO;ALGABA, JUAN-CARLOS;YUN, YOUNGJOO;JUNG, TAEHYUN;BYUN, DO-YOUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.4
    • /
    • pp.137-144
    • /
    • 2016
  • The calibration of Very Long Baseline Interferometry (VLBI) data has long been a time consuming process. The Korean VLBI Network (KVN) is a simple array consisting of three identical antennas. Because four frequencies are observed simultaneously, phase solutions can be transferred from lower frequencies to higher frequencies in order to improve phase coherence and hence sensitivity at higher frequencies. Due to the homogeneous nature of the array, the KVN is also well suited for automatic calibration. In this paper we describe the automatic calibration of single-polarisation KVN data using the KVN Pipeline and comparing the results against VLBI data that has been manually reduced. We find that the pipelined data using phase transfer produces better results than a manually reduced dataset not using the phase transfer. Additionally we compared the pipeline results with a manually reduced phase-transferred dataset and found the results to be identical.

DEVELOPMENT AND PERFORMANCE EVALUATION OF SOFTWARE SIMULATOR FOR APPROVING OF VLBI CORRELATION SUBSYSTEM (VLBI상관서브시스템의 검증을 위한 소프트웨어 시뮬레이터의 개발 및 성능시험)

  • Oh, Se-Jin;Roh, Duk-Gyoo;Yeom, Jae-Hwan;Chung, Hyun-Soo;Lee, Chang-Hoon;Kim, Hyo-Ryoung;Kim, Kwang-Dong;Kang, Yong-Woo;Park, Sun-Yeop
    • Publications of The Korean Astronomical Society
    • /
    • v.23 no.2
    • /
    • pp.73-90
    • /
    • 2008
  • A software simulator is developed for verifying the VLBI Correlation Subsystem (VCS) trial product hardware. This software simulator includes the delay tracking, fringe rotation, bit-jump, FFT analysis, re-quantization, and auto/cross-correlation functions so as to confirm the function of the VCS trial product hardware. To verify the effectiveness of the developed software simulator, we carried out experiments using the simulation data which is a mixed signal with white noise and tone signal generated by software. We confirmed that the performance of this software simulator is similar as that of the hardware system. In case of spectral analysis and re-quantization experiment, a serious problem of the VCS hardware, which is not enough for expressing the data stream of FFT results specified in VCS hardware specification, was found by this software simulator. Through the experiments, the performance of software simulator was verified to be efficient. In future, we will improve and modify the function of software simulator to be used as a software correlator of Korea-Japan Joint VLBI Correlator (KJJVC).

Multidrop Ethernet based IoT Architecture Design for VLBI System Control and Monitor (VLBI 시스템 제어 및 모니터를 위한 멀티드롭 이더넷 기반 IoT 아키텍처 설계)

  • Song, Min-Gyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1159-1168
    • /
    • 2020
  • In the past, control and monitor of a large number of instruments is a specialized area, which requires an expensive dedicated module to implement. However, with the recent development of embedded technology, various products capable of performing M&C (Monitor and Control) have been released, and the scope of application is expanding. Accordingly, it is possible to more easily build a small M&C environment than before. In this paper, we discussed a method to replace the M&C of the VLBI system, which had to be implemented through a specialized hardware product, with an inexpensive general imbeded technology. Memory based data transmission, reception and storage is a technology that is already generalized not only in VLBI but also in the network field, and more effective M&C can be implemented when some items of Ethernet are optimized for the VLBI (Very Long Baseline Interferometer) system environment. In this paper, we discuss in depth the design and implementation for the multidrop based IoT architecture.

PERFORMANCE EVALUATION OF DIGITAL DATA PROCESSING SYSTEM FOR KOREAN VLBI NETWORK(KVN) (KVN을 위한 디지털 데이터 처리 시스템의 성능평가)

  • Oh, Se-Jin;Roh, Duk-Gyoo;Yeom, Jae-Hwan;Byun, Do-Young;Lee, Chang-Hoon;Chung, Hyun-Soo;Je, Do-Heung;Wajima, Kiyoaki;Kawakami, Kazuyuki
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.3
    • /
    • pp.63-73
    • /
    • 2007
  • In this paper, we introduce the performance test results of digital data processing system for KVN (Korean VLBI Network). The digital data processing system for KVN consists of DAS (Data Acquisition System) and high-speed recorder which called Mark5B system. DAS system performs the digitalization of analog radio signal through ADS-1000 gigabit sampler with 1 Gsps/2-bit and process the digital filtering of digital signal. Mark5B system records the output data of DFB (Digital Filter Bank) with about 1 Gbps. In this paper, we carried out the preliminary evaluation experiments of the KVN digital data processing system connected between DAS system and Mark5B with VSI (VLBI Standard Interface) interface which is designed for compatible in each VLBI system. We first performed all of the KVN digital data processing system connected by VSI interface in the world. In factory inspection phase, we found that the DAS system has a memory read/write error in DSM (Digital Spectrometer) by analyzing the recorded data in Mark5B system. We confirmed that the DSM memory error has been correctly solved by comparing DSM results with Mark5B results. The effectiveness of KVN digital data processing system has been verified through the preliminary experiments such as data transmission, recording with VSI interface connection and data analysis between DSM and Mark5B system. In future work, we will perform the real astronomical observation by using the KVN 21m radio telescopes so as to verify its stability and performance.

VLBI TRF Combination Using GNSS Software

  • Kwak, Younghee;Cho, Jungho
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.315-320
    • /
    • 2013
  • Space geodetic techniques can be used to obtain precise shape and rotation information of the Earth. To achieve this, the representative combination solution of each space geodetic technique has to be produced, and then those solutions need to be combined. In this study, the representative combination solution of very long baseline interferometry (VLBI), which is one of the space geodetic techniques, was produced, and the variations in the position coordinate of each station during 7 years were analyzed. Products from five analysis centers of the International VLBI Service for Geodesy and Astrometry (IVS) were used as the input data, and Bernese 5.0, which is the global navigation satellite system (GNSS) data processing software, was used. The analysis of the coordinate time series for the 43 VLBI stations indicated that the latitude component error was about 15.6 mm, the longitude component error was about 37.7 mm, and the height component error was about 30.9 mm, with respect to the reference frame, International Terrestrial Reference Frame 2008 (ITRF2008). The velocity vector of the 42 stations excluding the YEBES station showed a magnitude difference of 7.3 mm/yr (30.2%) and a direction difference of $13.8^{\circ}$ (3.8%), with respect to ITRF2008. Among these, the 10 stations in Europe showed a magnitude difference of 7.8 mm/yr (30.3%) and a direction difference of $3.7^{\circ}$ (1.0%), while the 14 stations in North America showed a magnitude difference of 2.7 mm/yr (15.8%) and a direction difference of $10.3^{\circ}$ (2.9%).

A Study on the Test Results of 32 Gbps Observing System for Wideband VLBI Observation (광대역 VLBI 관측을 위한 32Gbps 관측장비의 시험결과 고찰)

  • Oh, Se-Jin;Yeom, Jae-Hwan;Roh, Duk-Gyoo;Jung, Dong-Kyu;Harada, Kenichi;Takezawa, Kosuke
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.18 no.1
    • /
    • pp.13-20
    • /
    • 2017
  • In this paper, we evaluate the basic test results of the 32 Gbps observational equipment introduced as the back-end system for the wideband VLBI (Very Long Baseline Interferometry) observation of KVN (Korean VLBI Network). Radio astronomers want to make a large radio telescope that has excellent performance in order to observe the superfine structure of a celestial body, but a lot of money is needed. Therefore, in order to increase the sensitivity, the performance improvement of the receiving system and the method of observing the wide frequency bandwidth are introduced. To do this, we adopted a wideband sampling method for converting analog signals to digital with ultra-fast speeds and a wideband sampler for performing digital filtering in order to observe a wide observational frequency bandwidth. The wideband sampler (OCTAD-K) supports up to 16 Gsps-2bits sampling and supports a variety of observational bandwidth using digital filtering techniques. In particular, it is designed to support KVN's 4-frequency simultaneous observation system and VERA(VLBI Exploration of Radio Astrometry)'s 2-beam observation system. It can also support polKVN(Korean VLBI Network), KaVA(KVN and VERA Array), 32Gbps Direct Sampler, Digital Filter, Widebandarization observations and supports the standard VDIF(VLBI Data Interchange Format) format of observed data. In this paper, the performance of the system and the problem solving are described in detail after performing the factory inspection and field test before the system is introduced.

  • PDF

The First Multi-Frequency Synthesis Space-VLBI Observations of 0059+581 with Radioastron

  • Alexey Rudnitskiy;Mikhail Shchurov;Taehyun Jung;Marcello Giroletti
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.1
    • /
    • pp.91-96
    • /
    • 2023
  • In this paper, we describe the first multi-frequency synthesis observations of blazar 0059+581 made with the Radioastron space-ground interferometer in conjunction with the Korean VLBI Network (KVN), Medicina and Torun ground telescopes. We conducted these observations to assess the spaceground interferometer multi-frequency mode capability for the first time.

CURRENT STATUS OF THE EAVN EXPERIMENTS

  • HAGIWARA, YOSHIAKI;AN, TAO;JUNG, TAEHYUN;RHO, DUK-GYOO;ZHANG, MING;HAO, LONGFEI;FUJISAWA, KENTA;YONEKURA, YOSHINORI;BAAN, WILLEM;KIM, JONGSOO;KOBAYASHI, HIDEYUKI
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.641-643
    • /
    • 2015
  • VLBI experiments have been conducted by radio telescopes in the East Asia VLBI Network (EAVN) in which 14 telescopes in China, Japan, and Korea participated. One of the aims of the EAVN is to obtain higher angular resolution that is provided by the 6,000 km baseline between China and Japan and better sensitivity by adding large telescopes. Data were recorded at 1 a Gbps recording rate at all stations and processed on the Korea-Japan Joint VLBI Correlator (KJJVC) at the Korea-Japan Correlation Center (KJCC) after experiments. Fringes were obtained from these experiments conducted at 8 GHz and 22 GHz and post-correlation data analysis of the experiments is undergoing. The outcomes of these experiments open the possibility of conducting EAVN observations with global VLBI networks. In this presentation, the recent status of these experiments and future prospects are presented.

Study on Station Unit Function for Sub-system of Cross-Correlator (전파영상합성기의 보조시스템으로서의 Station Unit의 기능 고찰)

  • Oh Se-Jin;Roh Duk-Gyoo;Chung Hyun-Soo;Kim Kwang-Dong;Lee Chang-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.531-534
    • /
    • 2005
  • 한국천문연구원에서는 한국우주전파관측망(Korean VLBI Network: KVN)을 위한 전파영상합성기(상관기) 개발을 진행하고 있다. 전파관측 VLBI 시스템 중 상관기(Correlater) 시스템의 한 구성요소로서 데이터 입력 부분에 각 관측 사이트의 데이터를 사전 처리하는 Station Unit(SU)이 있다. VLBI 시스템에서, 디지털화된 데이터의 다중채널은 테이프 또는 하드디스크에 다중트랙 형태로 인코딩된다. 이 SU의 주요기능은 다중트랙으로부터 인코딩된 데이터를 디코딩하고, 마치 기록되지 않은 것과 같이 채널기반의 샘플 스트림으로 이 데이터를 복원하는 것이다. 이 기능을 원활하게 수행하기 위해서, SU는 논리적으로 재생기 시스템과 함께 시스템이 통합될 필요가 있다. 본 논문에서는 전파 천문 VLBI 시스템 중 SU의 기능과 구조에 대해 고찰하고자 한다.

  • PDF

Source frequency phase referencing observations of H2O and SiO masers toward the semi-regular variable star R Crateris

  • Kim, Dong-Jin;Cho, Se-Hyung;Yun, Young-Joo;Kim, JaeHeon;Choi, Yoon Kyung;Yoon, Dong-Whan;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.58.4-59
    • /
    • 2015
  • We have performed single dish and VLBI monitoring observations of $H_2O$ and SiO masers toward the semi-regular variable star R Crateris using the Korean VLBI Network(KVN) 4 band receiving system. In the case of VLBI observations at 3 epochs, successful superposed maps of $H_2O$ and SiO masers were obtained on 2015 May by adopting the Source Frequency Phase Referencing(SFPR) method. These results enable us to investigate the development of outflow and asymmetric motions from SiO maser to $H_2O$ maser regions according to stellar pulsation which are closely related with a mass-loss process. Single dish monitoring observations were carried out from 2009 June to 2015 May. Intensity variations between $H_2O$ and SiO masers were investigated according to stellar phases together with peak velocity variations. We will compare the VLBI results with those of single dish.

  • PDF