• Title/Summary/Keyword: spThp1 gene

Search Result 9, Processing Time 0.026 seconds

Effects of spTho1 Deletion and Over-Expression on mRNA Export in Fission Yeast (분열효모에서 spTho1 유전자의 결실과 과발현이 생장 및 mRNA Export에 미치는 영향)

  • Cho, Ye-Seul;Yoon, Jin-Ho
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.401-404
    • /
    • 2010
  • Tho1 is a RNA-binding protein that assembles co-transcriptionally onto the nascent mRNA and is thought to be involved in mRNP biogenesis and mature mRNA export to cytoplasm in budding yeast. In fission yeast Schizosaccharomyces pombe, a homologue of THO1 (spTho1) was identified based on sequence alignment. A deletion mutant in a diploid strain was constructed by replacing one of spTho1-coding region with an ura4+ gene using one-step gene disruption method. Tetrad analysis showed that the spTho1 was not essential for growth. The spTho1 mutant did not show any defects of bulk mRNA export. However, over-expression of spTho1 from strong nmt1 promoter caused the growth defects and accumulation of poly(A)$^+$ RNA in the nucleus. These results suggest that spTho1 is involved in mRNA export from the nucleus to cytoplasm though it is not essential.

Effects of all-trans retinoic acid on expression of Toll-like receptor 5 on immune cells (All-trans retinoic acid가 면역세포의 Toll-like receptor 5 발현에 미치는 영향)

  • Kim, Ki-Hyung;Park, Sang-Jun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.6
    • /
    • pp.481-489
    • /
    • 2010
  • Introduction: TLR-5, a member of the toll-like receptor (TLR) family, is a element of the type I transmembrane receptors, which are characterized by an intracellular signaling domain homolog to the interleukin-1 receptor. These receptors recognize microbial components, particularly bacterial flagellin. All-trans retinoic acid (atRA, tretinoin), a natural metabolite of vitamin A, acts as a growth and differentiation factor in many tissues, and is also needed for immune functions. In this study, THP-1 human macrophage-monocytes were used to examine the mechanisms by which atRA regulated the expression of TLR-5. Because the molecular mechanism underlying this regulation at the transcriptional level is also unclear, this study examined which putative transcription factors are responsible for TLR-5 expression by atRA in immune cells. Materials and Methods: This study examined whether atRA induces the expression of TLR-5 in THP-1 cells using reverse transcription-polymerase chain reaction (RT-PCR), and which transcription factors are involved in regulating the TLR-5 promoter in RAW264.7 cells using a reporter assay system. Western blot analysis was used to determine which signal pathway is involved in the expression of TLR-5 in atRA-treated THP-1 cells. Results: atRA at a concentration of 10 nM greatly induced the expression of TLR-5 in THP-1 cells. Human TLR-5 promoter contains three Sp-1/GC binding sites around -50 bp and two NF-kB binding sites at -380 bp and -160 bp from the transcriptional start site of the TLR-5 gene. Sp-1/GC is primarily responsible for the constitutive TLR-5 expression, and may also contribute to NF-kB at -160 bp to induce TLR-5 after atRA stimulation in THP-1 cells. The role of NF-kB in TLR-5 expression was further confirmed by inhibitor pyrrolidine dithiocarbamate (PDTC) experiments, which greatly reduced the TLR-5 transcription by 70-80%. Conclusion: atRA induces the expression of the human TLR-5 gene and NF-kB is a critical transcription factor for the atRA-induced expression of TLR-5. Accordingly, it is conceivable that retinoids are required for adequate innate and adaptive immune responses to agents of infectious diseases. atRA and various synthetic retinoids have been used therapeutically in human diseases, such as leukemia and other cancers due to the antiproliferative and apoptosis inducing effects of retinoids. Therefore, understanding the molecular regulatory mechanism of TLR-5 may assist in the design of alternative strategies for the treatment of infectious diseases, leukemia and cancers.

Molecular Mechanisms through Which Peptidoglycan Induces IL-1β Expression in Monocytic Cells (펩티도글라이칸에 의한 인터루킨-1 베타 발현 기전 연구)

  • Seo, Hyun-Cheol;Kim, Sun-Mi;Lee, Sae-A;Rhim, Byung-Yong;Kim, Koanhoi
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1637-1643
    • /
    • 2012
  • This study investigated the effects of PG on IL-$1{\beta}$ expression and determined cellular factors involved in PG-mediated IL-$1{\beta}$ up-regulation in mononuclear cells in order to understand the molecular mechanisms underlying inflammatory responses associated with bacterial pathogen-associated molecular patterns in the diseased artery. Exposure of human monocytic leukemia THP-1 cells to PG resulted in enhanced secretion of IL-$1{\beta}$ and also profound induction of the IL-$1{\beta}$ gene transcript. These effects were abrogated by OxPAPC, an inhibitor of TLR-2/4. Pharmacological inhibitors such as U0126, SP6001250, Akti IV, rapamycin, and DPI also significantly attenuated PG-mediated IL-$1{\beta}$ up-regulation. However, polymyxin B did not influence the IL-$1{\beta}$ expression. This study indicates that PG contributes to vascular inflammation in atherosclerotic plaques by up-regulating expression of IL-$1{\beta}$ via TLR-2, Akt, mTOR, MAPKs, and ROS.

Involvement of Multiple Signaling Molecules in Peptidoglycan-induced Expression of Interleukin-1α in THP-1 Monocytes/Macrophages (THP-1 단핵구의 펩티도글리칸 유래 인터루킨-1 알파 발현에서 TLR2, PI3K/Akt/mTOR, MAPKs의 역할)

  • Heo, Weon;Son, Yonghae;Cho, Hyok-rae;Kim, Koanhoi
    • Journal of Life Science
    • /
    • v.32 no.6
    • /
    • pp.421-429
    • /
    • 2022
  • The expression of interleukin-1α (IL-1α) is elevated in monocytic cells, such as monocytes and macro-phages, within atherosclerotic arteries, yet the cellular molecules involved in cytokine upregulation remain unclear. Because peptidoglycan (PG), a major component of gram-positive bacterial cell walls, is detected within the inflammatory cell-rich regions of atheromatous plaques, it was investigated if PG contributes to IL-1α expression in monocytes/macrophages. Exposure of THP-1 monocytic cells to PG resulted in elevated levels of IL-1α gene transcripts and increased secretion of IL-1α protein. The transcription and secretion of IL-1α were abrogated by OxPAPC, an inhibitor of TLR2/4, but not by polymyxin B that inhibits lipopolysaccharide-induced TLR4 activation. To understand the molecular mechanisms of the inflammatory responses due to bacterial pathogen-associated molecular patterns (PAMPs) in diseased arteries, we attempted to determine the cellular factors involved in the PG-induced upregulation of IL-1α expression. Pharmacological inhibition of cell signaling pathways with LY294002 (a PI3K inhibitor), Akti IV (an inhibitor of Akt activation), rapamycin (an mTOR inhibitor), U0126 (a MEK inhibitor), SB202190 (a p38 MAPK inhibitor), SP6001250 (a JNK inhibitor), and DPI (a NOX inhibitor) also significantly attenuated the PG-mediated expression of IL-1α. These results suggest that PG induces the monocytic or macrophagic expression of IL-1α, thereby contributing to vascular inflammation, via multiple signaling molecules, including TLR2, PI3K/Akt/mTOR, and MAPKs.

Molecular Mechanisms Involved in Peptidoglycan-induced Expression of Tumor Necrosis Factor-α in Monocytic Cells (펩티도글리칸에 의한 단핵세포의 Tumor necrosis factor-α 발현 기전 연구)

  • Jeong, Ji-Young;Son, Yonghae;Kim, Bo-Young;Kim, Koanhoi
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1251-1257
    • /
    • 2019
  • Peptidoglycan (PG) is found in atheromatous lesions of arteries, where monocytes/macrophages express inflammatory cytokines, including tumor necrosis factor-alpha ($TNF-{\alpha}$). This study investigated the effects of PG on $TNF-{\alpha}$ expression and examined possible cellular factors involved in $TNF-{\alpha}$ upregulation. The overall aim was to identify the molecular mechanisms underlying inflammatory responses to bacterial pathogen-associated molecular patterns in the artery. Exposure of human THP-1 monocytic cells to PG enhanced the secretion of $TNF-{\alpha}$ and induced its gene transcription. Inhibition of TLR-2/4 with OxPAPC significantly inhibited $TNF-{\alpha}$ gene expression, whereas inhibition of LPS by polymyxin B did not. The PG-induced expression of $TNF-{\alpha}$ was also significantly suppressed by pharmacological inhibitors that modulate activities of cellular signaling molecules; for example, U0126 (an ERK inhibitor), SB202190 (a p38 MAPK inhibitor), and SP6001250 (a JNK inhibitor) significantly attenuated PG-induced transcription of $TNF-{\alpha}$ and secretion of its gene product. $TNF-{\alpha}$ expression was also inhibited by rapamycin (an mTOR inhibitor), LY294002 (a PI3K inhibitor), and Akt inhibitor IV (an Akt inhibitor). ROS-regulating compounds, like NAC and DPI, also significantly attenuated $TNF{\alpha}$ expression induced by PG. These results suggest that PG induces $TNF-{\alpha}$ expression in monocytes/macrophages by multiple molecules, including TLR-2, PI3K, Akt, mTOR, MAPKs, and ROS.

FSL-1, a Toll-like Receptor 2/6 Agonist, Induces Expression of Interleukin-$1{\alpha}$ in the Presence of 27-hydroxycholesterol

  • Heo, Weon;Kim, Sun-Mi;Eo, Seong-Kug;Rhim, Byung-Yong;Kim, Koanhoi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.6
    • /
    • pp.475-480
    • /
    • 2014
  • We investigated the question of whether cholesterol catabolite can influence expression of inflammatory cytokines via Toll-like receptors (TLR) in monocytic cells. Treatment of THP-1 monocytic cells with 27-hydroxycholesterol (27OHChol) resulted in induction of gene transcription of TLR6 and elevated level of cell surface TLR6. Addition of FSL-1, a TLR6 agonist, to 27OHChol-treated cells resulted in transcription of the $IL-1{\alpha}$ gene and enhanced secretion of the corresponding gene product. However, cholesterol did not affect TLR6 expression, and addition of FSL-1 to cholesterol-treated cells did not induce expression of $IL-1{\alpha}$. Using pharmacological inhibitors, we investigated molecular mechanisms underlying the expression of TLR6 and $IL-1{\alpha}$. Treatment with Akt inhibitor IV or U0126 resulted in significantly attenuated expression of TLR6 and $IL-1{\alpha}$ induced by 27OHChol and 27OHChol plus FSL-1, respectively. In addition, treatment with LY294002, SB202190, or SP600125 resulted in significantly attenuated secretion of $IL-1{\alpha}$. These results indicate that 27OHChol can induce inflammation by augmentation of TLR6-mediated production of $IL-1{\alpha}$ in monocytic cells via multiple signaling pathways.

Cellular Signaling Molecules Associated with Peptidoglycan-Induced CCL3 Up-Regulation

  • Kim, Kang-Seung;Rhim, Byung-Yong;Eo, Seong-Kug;Kim, Koan-Hoi
    • Biomolecules & Therapeutics
    • /
    • v.19 no.3
    • /
    • pp.302-307
    • /
    • 2011
  • Peptidoglycan (PGN) is detected in inflammatory cell-rich regions of human atheromatous plaques. The present study investigated the effects of PGN on CC chemokine ligand 3 (CCL3) expression, which is elevated in the atherosclerotic arteries, and determined cellular factors involved in PGN-mediated CCL3 up-regulation in mononuclear cells, with the goal of understanding the molecular mechanisms of inflammatory responses to bacterial pathogen-associated molecular patterns in diseased arteries. Exposure of human monocytic leukemia THP-1 cells to PGN resulted in enhanced secretion of CCL3 and profound induction of the CCL3 gene transcript. Both events were abrogated by oxidized 1-palmitoyl-2-arachidonosyl-sn-phosphatidylcholine, an inhibitor of Toll-like receptors 2/4. Pharmacological inhibitors such as U0126, SP6001250, Akt inhibitor IV, rapamycin, RO318220, diphenyleneiodonium chloride, and N-acetylcysteine also significantly attenuated PGN-mediated CCL3 up-regulation. However, polymyxin B, LY294002, and SB202190 did not influence CCL3 expression. We propose that PGN contributes to enhanced CCL3 expression in atherosclerotic plaques and that Toll-like receptors (TLR2), Akt, mTOR, mitogen-activated protein kinase, and reactive oxygen species are involved in that process.

Multiple Signaling Molecules are Involved in Expression of CCL2 and IL-$1{\beta}$ in Response to FSL-1, a Toll-Like Receptor 6 Agonist, in Macrophages

  • Won, Keunsoo;Kim, Sun-Mi;Lee, Sae-A;Rhim, Byung-Yong;Eo, Seong-Kug;Kim, Koanhoi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.447-453
    • /
    • 2012
  • TLR6 forms a heterodimer with TLR2 and TLR4. While proinflammatory roles of TLR2 and TLR4 are well documented, the role of TLR6 in inflammation is poorly understood. In order to understand mechanisms of action of TLR6 in inflammatory responses, we investigated the effects of FSL-1, the TLR6 ligand, on expression of chemokine CCL2 and cytokine IL-$1{\beta}$ and determined cellular factors involved in FSL-1-mediated expression of CCL2 and IL-$1{\beta}$ in mononuclear cells. Exposure of human monocytic leukemia THP-1 cells to FSL-1 resulted not only in enhanced secretion of CCL2 and IL-$1{\beta}$, but also profound induction of their gene transcripts. Expression of CCL2 was abrogated by treatment with OxPAPC, a TLR-2/4 inhibitor, while treatment with OxPAPC resulted in partially inhibited expression of IL-$1{\beta}$. Treatment with FSL-1 resulted in enhanced phosphorylation of Akt and mitogen-activated protein kinases and activation of protein kinase C. Treatment with pharmacological inhibitors, including SB202190, SP6001250, U0126, Akt inhibitor IV, LY294002, GF109203X, and RO318220 resulted in significantly attenuated FSL-1-mediated upregulation of CCL2 and IL-$1{\beta}$. Our results indicate that activation of TLR6 will trigger inflammatory responses by upregulating expression of CCL2 and IL-$1{\beta}$ via TLR-2/4, protein kinase C, PI3K-Akt, and mitogen-activated protein kinases.

Efficacy and Safety Evaluation of an Air Sterilizer Equipped With an Electrolytic Salt Catalyst for the Removal of Indoor Microbial Pollutants (염촉매 전기분해 공기살균기의 효능 평가)

  • Sun Nyoung Yu;Ho-Yeon Jeon;Bu Kyung Kim;Ae-Li Kim;Kyung Il Jung;Gye Rok Jeon;Soon Cheol Ahn
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.500-508
    • /
    • 2024
  • Recently, there has been increasing interest in enhancing the indoor air quality, particularly in response to the growing utilization of public facilities. The focus of this study was on assessing the efficacy and safety of an air sterilizer equipped with electrolytic salt catalysts. To that end, we evaluated the antimicrobial activity of the vapor spraying from the air sterilizer and its cytotoxicity in condensed form on human cell lines (HaCaT, BEAS-2B, and THP-1). Against the test organisms, which comprised five bacterial strains (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium) and one fungal strain (Candida albicans), the air sterilizer exhibited relatively high antimicrobial activities ranging from 10.89 to 73.98% following 1 and 3 hr of vapor spraying, which were notably time-dependent. Importantly, cytotoxicity assessments on human cells indicated no significant harmful effect even at a 1.0% concentration. Comprehensive safety evaluations included morphological observations, gene expression (Bcl-2, Bax) tests, and FACS analysis of intracellular ROS levels. Consistent with previous cytotoxicity findings, these estimates demonstrated no significant changes, highlighting the air sterilizer's safety and antimicrobial activities. In a simulated 20-hr operation within an indoor environment, the air sterilizer not only showed an 89.4% removal of total bacteria but also a 100.0% removal of Escherichia sp. and fungi. This research outlines the potential of the developed electrolytic salt catalyst air sterilizer to effectively remove indoor microbial pollutants without compromising human safety, underscoring the solution that it offers for improving indoor air quality.