• Title/Summary/Keyword: soybean source

Search Result 495, Processing Time 0.048 seconds

Properties of Protease from Aeromonas hydrophila AM-28 Isolated from Soil (토양에서 분리된 Aeromonas hydrophila AM-28이 생산하는 단백질 가수분해효소의 특성)

  • Kim, In-Sook;Kim, Hyung-Kwoun;Lee, Jung-Kee;Bae, Kyung-Sook;Oh, Tae-Kwang
    • Korean Journal of Microbiology
    • /
    • v.32 no.4
    • /
    • pp.291-296
    • /
    • 1994
  • A bacterial strain NO. AM-28, showing proteolytic activity against defatted soybean was isolated from domestic soil. The isolated strain was identified as Aeromonas hydrophila by both the biochemical tests using API kit and the analysis of cellular fatty acid profile with MIDI system. The protease production from A. hydrophila AM-28 was highly enhanced when it was cultivated in the medium containing glycerol as a carbon source, tryptone or $(NH_4)_2HPO_4$ as a nitrogen source, and $CaCl_2$ as a mineral source. The optimal pH and temperature for the enzyme was 8.0 and $65^{\circ}C$, respectively. The enzyme was stable up to $55^{\circ}C$ and at pH values ranging from 7.0 to 13.0. The enzyme activity was inhibited by phenylmethylsulfonyl fluoride and EDTA, indicating that serine residue and metal ions be involved in enzyme activity.

  • PDF

Thermal Distribution of Size-resolved Carbonaceous Aerosols and Water Soluble Organic Carbon in Emissions from Biomass Burning

  • Bae, Min-Suk;Park, Seung-Shik
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.2
    • /
    • pp.95-104
    • /
    • 2013
  • The study of carbonaceous aerosols in the atmosphere is critical to understand the role of aerosols in human health and climate. Using standardized thermal optical transmittance methods, organic carbon (OC), elemental carbon (EC), and water soluble organic carbon (WSOC) were determined using a combustion sampling system for four types of agricultural crop residues (rice straw, red pepper stems, soybean stems, and green perilla stems) and eight types of forest trees (pine stems, pine needles, ginkgo stems, ginkgo leaves, maple stems, maple leaves, cherry stems, and cherry leaves). The aerosol particles between 0.056 and $5.6{\mu}m$ in size were analyzed using a Micro-Orifice Uniform Deposit Impactor (MOUDI). In the current study, the Carbonaceous Thermal Distribution (CTD) by carbon analyzer was discussed in order to understand the carbon fractions from the twelve types of biomass burning. Also, the concentration of OC, EC, WSOC, and water insoluble organic carbon (WIOC) detected in the emissions were described.

Hot Pepper Functional Genomics: Monitoring of Global Gene Expression Profiles During Non-Host Resistance Reactions in Hot Pepper Plant ( Capsicum annuum).

  • Lee, Sanghyeob;Chung, Eun-Joo;Park, Doil
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.80.2-81
    • /
    • 2003
  • Since hot peppers (Capsicum annuum L.) are getting reputation as an important source of vitamins, medicine and many other areas, consumption and cultivation is being increased in the world. In spite of this usefulness, so little attention has been given to the hot pepper plants. To date, less than 500 nucleotide sequences including redundancy has been identified in NCBI database. Therefore we started to EST sequencing project for initial characterization of the genome, because of the large genome size of hot pepper (2.7 3.3 ${\times}$ 109 bp), To date, a set of 10,000 non-redundant genes were identified by EST sequencing for microarray-based gene expression studies. At present, cDNA microarrays containing 4,685 unigene clones are used for hybridization labeled targets derived from pathogen infected and uninoculated leaf tissues. Monitoring of gene expression profiles of hot pepper interactions with soybean pustule pathogen (Xag;Xanthomonas axonopodis pv. glycine) will be presented.

  • PDF

Characteristics of Bradyrhizobium japonicum SNU001, aSsymbiotic Strain of Glycion max (콩(Glycine max)의 공생균주 Bradyrhizobium japonicum SNU001의 특성)

  • 고세리;박용근;안정선
    • Korean Journal of Microbiology
    • /
    • v.29 no.2
    • /
    • pp.143-147
    • /
    • 1991
  • The root nodules and Glycine max were classified as determinate nodule based on their morphological characteristics, and isolated endosymbiont as a Bradyrhizobium based on its growth rate and single subpolar flagellum. The isolate was similar to B. japonicum USDA110 in utilization of carbon source, growth at 38.deg.C and 2% NaCl, production of $H_{2}$S and especially in the restriction endonuclease digestion pattern of symbiotic genes, allowing them to be placed in sTI group together. The former, however, grew better than the later in broad pH range from 5.0 to 9.5. Infectivity and effectivity of the isolate were confirmed by inoculation of soybean seedlings with the isolates. Characteristics of the reisolated endosymbiont from induced root nodules were identical to those of the first isolate. From these results, it was confirmed that Bradyrhizobium strain isolated from the root nodules of Glycine max was a real symbiont, and was named B. japonicum SNU001.

  • PDF

A Study on the Characteristics of Exhaust Emissions by Biodiesel Blend Waste Oil in Marine Diesel Engine (선박디젤기관에서 바이오디젤 폐혼합유의 배기배출물특성에 대한 연구)

  • Cho, Sang-Gon
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.90-95
    • /
    • 2015
  • Recently worldwide concern and research is being actively conducted on green energy which can reduce environmental pollution. A plant such as the natural rapeseed oil, soybean oil, palm, etc. is used as a bio source in home and industry. Biofuels is a sustainable fuel having economically benefits and decreasing environmental pollution problems caused due to fossil fuel, and it can be applied to the conventional diesel engine without changing the existing institutional structure. Waste vegetable oil contains a high cetane number and viscosity component, the low carbon and oxygen content. A lot of research is progressing about the conversion of waste vegetable oil as renewable clean energy. In this study, waste oil was prepared to waste cooking oil generated from the living environment, and applied to diesel engine to confirm the possibility and cost-effectiveness of biodiesel blend waste oil. As a result, brake specific fuel consumption and NOx was increased, carbon monoxide and soot was decreased.

Producing Alkaline Lipase by Fusarium oxysporum Using Unconventional Medium Components

  • Quadros, Cedenir Pereira de;Bicas, Juliano Lemos;Neri-Numa, Iramaia Angelica;Pastore, Glaucia Maria
    • Food Science and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1519-1522
    • /
    • 2009
  • This study reports the use of different inducing agents (olive, soybean, and used frying oils) and culture mediums [synthetic medium (SM), whey protein, and corn steep liqueur (SL)] to optimize the production of lipase by Fusarium oxysporum. A relationship among the inoculum size, presence of a fat source, fungal growth, and lipase production was evident during the fermentation. The best results were achieved when the inoculum was grown in SM or SL and the fermentation was developed in SM with frying oil as the inducing agent. The maximum activity (about 15 U/mL) was obtained after a 72 hr cultivation.

Pectolytic Enzymes of the Industrial Fungus Aspergillus kawachii

  • Vita, Carolina Elena;Esquivel, Juan Carlos Contreras;Voget, Claudio Enrique
    • Food Science and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1365-1370
    • /
    • 2009
  • Aspergillus kawachii extracellular pectinases were screened in liquid cultures with different carbon sources. The fungus grown on citrus pectin or lemon pomace produced at least one of these inducible pectinases: acidic polygalacturonase, pectin lyase, pectin methylesterase, $\alpha$-L-arabinofuranosidase, $\alpha$-1,5-endoarabinase, $\beta$-D-galactosidase/exogalactanase, and $\beta$-1,4-endogalactanase. The lemon-pomace filtrates also contained significant $\alpha$-L-rhamnosidase and $\beta$-D-fucosidase activities. Most of the screened pectinases were active at pH 2.0-2.5, indicating that the A. kawachii enzymes were acidophilic. Under the culture conditions employed we could not detect enzymatic degradation of soybean rhamnogalacturonan. The A. kawachii pectinase-production-related regulatory phenomena of induction-repression resemble those described for other Aspergillus sp.