• Title/Summary/Keyword: soybean[Glycine max (L.) Merr.]

Search Result 156, Processing Time 0.024 seconds

Yield and Quality of Black Soybean (Glycine max L.) in Paddy Field under Different Sowing Dates (검정콩 논재배에서 파종시기가 수량 및 종실 특성에 미치는 영향)

  • Jo, Yeong-Min;Heo, Byong Soo;Choi, Kyu-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.1
    • /
    • pp.53-60
    • /
    • 2022
  • Recently, Black soybean (Glycine max L. Merr.) is being cultivated in paddy fields instead of rice. However, research related to the effective sowing date is insufficient in paddy fields. This study aimed to identify the sowing date for stable cultivation of black soybean by investigating its yield and seed characteristics in a paddy field. In the study, cultivation experiment with five different sowing dates (May 25, June 10, June 25, July 10, July 25) were conducted in 2019 and 2020. Days from sowing to flowering can be shortened by delaying the sowing date. In the present study, the yield of black soybean in paddy fields was the highest with June 10 as the sowing date and was calculated as 224 kg·10a-1 and 200 kg·10a-1 in 2019 and 2020, respectively. However, the highest values of seed coat cracking was 51.1±5.1% and that of total anthocyanin contents was the 3.99±0.72 mg/g, both of which were observed in 2020 for the experiment with May 25 as the sowing date. Regression analysis showed a positive correlation (R2=0.9312) between soil water contents and seed coat cracking rate during the flowering period. Hence, the soil water contents during the flowering period would have a negative effect on the seed coat development.

Effect of Sowing Dates on Agronomic Traits and Quality of Seed for Soybean [Glycine max (L.) Merr.] in Southern Area of Korea

  • Hye Rang Park;Sanjeev Kumar Dhungana;Beom Kyu Kang;Jeong Hyun Seo;Jun Hoi Kim;Su Vin Heo;Ji Yoon Lee;Won Young Han;Hong-Tai Yun;Choon Song Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.313-326
    • /
    • 2023
  • Owing to adverse weather conditions, there is a heightened focus on actively researching the regulation of the sowing date in field crop cultivation. Soybean, a prominent field crop with extensive acreage and production, is a photophilic and thermophilic crop characterized by short-day photoperiodism. Identifying the optimal sowing time is crucial for mitigating the effects of severe weather conditions on soybean yield. Precise control over the timing of soybean sowing is the key to minimizing yield reduction due to unfavorable weather conditions. Temperature, photoperiod, and their interplay are the most significant factors influencing soybean cultivation among various weather factors. We conducted an experiment using three Korean soybean cultivars with varied maturities (Hwangkeumol: early maturing and Daewonkong and Pungsannamulkong: late maturing) in 2013 and 2014. Our investigation covered aspects of soybean growth, development, yield components, isoflavones, and visual seed quality. Across all three varieties, isoflavone levels increased with later sowing dates, while other measured components exhibited significant variations based on the sowing date. This study also provides valuable insights for the selection of suitable cultivars that perform well in soybean cultivation at various durations of maturity.

Effects of Weed Interference and Starter Fertilizer on Subsequent Seed Germination and Vigour of Soybean (Glycine max [L.] Merr.)

  • Mohammadi, G.R.;Amiri, F.
    • Korean Journal of Weed Science
    • /
    • v.32 no.1
    • /
    • pp.17-24
    • /
    • 2012
  • The study was conducted to investigate the effect of weed interference and starter fertilizer on subsequent soybean seed quality at the Agricultural Research Farm and Laboratory of Razi University, Kermanshah, Iran. Two factorial experiment was laid-outon a randomized complete block design with four replications. First factor was starter fertilizer levels (0 and 25 kg $ha^{-1}$) applied in the forms of monoammonium phosphate, the second factor was different weed interference periods consisted of five initial weed-free periods (in which, plots were kept free of weeds for 0, 15, 30, 45 and 60 days after crop emergence (DAE) and then weeds were allowed to grow until harvest) and five initial weed-infested periods (in which, weeds were allowed to grow for 0, 15, 30, 45 and 60DAE, after which the plots were kept free of weeds until harvest). Full season weedy condition reduced 100-seed weight, seed germination percentage and seedling dry weight by 25.9, 13.3 and 22.5%, respectively and increased mean germination time and seed electrical conductivity by 55.8 and 24.3%, respectively as compared with full season weed-free control. However, the traits under study were not significantly influenced when field was kept free of weeds for at least 45 DAE (R1) or weedy condition was continued for less than 30 DAE (V8). There was a significant and negative correlation between weed biomass and seed weight (r = -0.93), so that when weed free condition was less than 45 DAE or weed infested period was continued for at least 30 DAE, soybean plants produced wrinkled and underdeveloped seeds with lower weights and qualities. Moreover, soybean seed quality reduction due to weed interference was more evident when starter fertilizer was applied and weeds interfered with soybean from the beginning of the growing season. Information from the present study is beneficial in soybean seed production systems and where farmers use the harvested seeds for the following planting.

Dry Matter Accumulation, Harvest Index, and Yield of Soybean in Response to Planting Time

  • Chun, Seong-Rak
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.4
    • /
    • pp.311-318
    • /
    • 2002
  • Planting date of soybeans [Glycine max (L.) Merr.] is one of production components in cultural systems. The objective of the current study was to identify the components of soybean production and cultural practices encompassing planting dates and cultivars that respond to dry matter accumulation, harvest index and yield components. Three determinate soybean cultivars were planted on May 13 (early), June 3 (mid), and June 24 (late). Planting density was 60$\times$15cm with 2 seeds (222,000 plants per ha). Soybean plants were sampled every 10 days interval from the growth stages of V5 to R8 and separated into leaves including petioles, stems, pods, and seeds. Dry matter accumulations, harvest indices, and yield components were measured. Early planting had taken 55 days from VE to R2 and late planting taken 39 days indicating reduced vegetative growth. Early planting showed higher leaf, stem, pod and seed dry weights than late planting. However, late planting appeared to be higher harvest index and harvesting rate. Vegetative mass including leaf and stem increased to a maximum around R4/R5 and total dry weight increased to a maximum around R5/R6 and then declined slightly at R8. The highest seed yield was obtained with mid planting and no difference was found between early and late plantings. Cultivar differences were found among planting dates on growth characteristics and yield components. The results of this experiment indicated that soybean yield in relation to planting dates examined was mainly associated with harvest index and harvesting rate, and planting date of cultivars would be considered soybean plants to reach the growth stage of R4/R5 after mid August for adequate seed yield.

The Relationship Between Green Stem Disorder and the Accumulation of Vegetative Storage Protein in Soybean

  • Zhang, Jiuning;Katsube-Tanaka, Tomoyuki;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2019.09a
    • /
    • pp.22-22
    • /
    • 2019
  • Green stem disorder (GSD) of soybean (Glycine max (L.) Merr.) is characterized by delayed senescence of stems with normal pod ripening and seed maturation (Hobbs, 2006). GSD complicates harvesting of soybeans by significantly increasing the difficulty in cutting the affected plants. There is also the potential for moisture in the stems to be scattered on the seed, reducing the grade and storability of the seed. Not only the cause of GSD is yet unknown, but also GSD cannot be evaluated until maturity, therefore the method to evaluate GSD in early growth stage with high sensitivity is necessary. In previous studies, it has been reported that vegetative storage protein (VSP) accumulates and the syndrome of GSD appears in soybean after depod treatment (Fischer, 1999). Soybean VSP is a storage protein which is abundant in young sink leaves and degraded during seed fill (Wittenbach, 1982). Hence, we have established a system to quantify VSP of high sensitivity by using standard protein made by genetically transformed E. coli and specific antibody against VSP, and studied the relationship between VSP and GSD, by depod experiment and drought/excess wet experiments. The result of depod experiment with the cultivar 'Yukihomare' was the same with the previous studies, VSP accumulated much more than control and the syndrome of GSD appeared in soybean in depod treatment. Drought and excess wet had different impact on GSD. Excess wet caused GSD of the cultivar 'Tachinagaha (GSD susceptible)', while drought caused a little syndrome of GSD in the cultivar 'Touhoku 129 (GSD resistant)'. The accumulation of VSP differed between the two cultivars over time. In conclusion, the accumulation of VSP came along with the emergence of GSD. Different cultivars showed different response to drought and excess wet. In the future, it is expected that the dynamics of VSP will be elucidated in detail, leading to the development of early diagnosis technology for green stem disorder and the elucidation of mechanism of soybean GSD.

  • PDF

Detection of Xanthomonas axonopodis pv. glycines and Survey on Seed Contamination in Soybean Seeds Using PCR Assay (PCR Assay 이용 콩 종자에서 Xanthomonas axonopodis pv. glycines 검출 및 종자오염 조사)

  • Hong, Sung-Jun;Hong, Yeon-Kyu;Lee, Bong-Choon;Lim, Mi-Jung;Yoon, Young-Nam;Hwang, Jae-Bok;Song, Seok-Bo;Park, Sung-Tae
    • Research in Plant Disease
    • /
    • v.13 no.3
    • /
    • pp.145-151
    • /
    • 2007
  • Xanthomonas axonopodis pv. glycines is the causal agent of bacterial pustule of soybean(Glycine max. (L.) Merr), which is one of the most prevalent bacterial diseases in Korea. In this study, Polymerase Chain Reaction (PCR) assay was applied to detect Xanthomonas axonopodis pv. glycines and to survey on seed contamination in 36 soybean cultivars of Korea. And we have to compare PCR assay with dilution-plating assay of detection and identification. We confirmed detection of pathogen from artificial infected seeds and natural Infected seeds using PCR assay. This assay gave results similar to a seed-wash dilution plating assay and proved more effective than classical methods. Results of survey on seed contamination by X. axonopodis pv. glycines from 36 cultivar seeds showed that the pathogen was detected from Pungsan-namulkong, Mallikong, Taekwangkong, Daemangkong, Ajukkarikong using PCR assay. Therefore, The PCR assay provides a sensitive, rapid tool for the specific detection of X. axonopodis pv. glycines in soybean seeds.

Isoflavone Concentrations and Composition of Soybean Varieties Grown in Upland and Lowland Regions of Vietnam

  • Cong, Luong Chi;Seguin, Philippe;Khanh, Tran Dang;Kim, Eun-Hye;Ahn, Joung-Kuk;Chung, Ill-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.1
    • /
    • pp.64-71
    • /
    • 2011
  • Health beneficial properties of soybean [Glycine max (L.) Merr.] isoflavones are well known. The objectives of this study were to determine and compare the isoflavone composition and concentrations of soybean varieties grown in different cultivated regions of Vietnam (i.e., upland and lowland). Total and individual isoflavone composition and concentrations were determined by high-performance liquid chromatography (HPLC). Total isoflavone concentrations varied from 1153 to $6604{\mu}g\;g^{-1}$ and averaging $3354{\mu}g\;g^{-1}$ across environments and varieties. In the lowland region, the highest total isoflavones concentration was observed in M103 cultivar ($5653{\mu}g\;g^{-1}$) and the lowest in VX9-3 ($1153{\mu}g\;g^{-1}$), whereas in the upland region the highest and lowest concentrations were in M103 ($6604{\mu}g\;g^{-1}$) and DT93 ($1938{\mu}g\;g^{-1}$), respectively. Across varieties, average total isoflavones concentration was higher in the upland than lowland region (3728 vs. $2980{\mu}g\;g^{-1}$). The malonylglucosides and acetylglucosides concentrations in upland soybean varieties were higher than those from the lowland region. Despite the presence of Genotype (G) x Environment (E) interactions, varieties with consistently high (M103) and low (VX9-3, DT93) isoflavone concentrations across environments were identified. This is the first report of isoflavones in Vietnamese soybean varieties, revealing large variation in isoflavones concentration and profile among different varieties and cultivated regions. Results will be useful in selecting high-isoflavones soybean varieties for growth in tropical regions.

Comparison of Anthocyanin Content in Seed Coats of Black Soybean [Glycine max(L.) Merr.] Cultivars Using Liquid Chromatography Coupled to Tandem Mass Spectrometry

  • Shin, Sung-Chul;Lee, Soo-Jung;Lee, Sung-Joong;Chung, Jong-Il;Bae, Dong-Won;Kim, Soo-Taek;Sung, Nak-Ju
    • Food Science and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1470-1475
    • /
    • 2009
  • The seed coat of the black soybean contains 3 main anthocyanins such as delphinidin-3-O-$\beta$-glucoside, cyanidin-3-O-$\beta$-glucoside, and petunidin-3-O-$\beta$-glucoside. As a part of our effort on discovering and breeding new black soybean cultivars which possesses specific anthocyanin component rich, we determined the anthocyanin profiles of the 2 cultivars recently developed soybean cv. Gaechuck #1 and cv. Gyeongsang #1, using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and compared their content and identity with those of previously known 10 cultivar controls. The Cosmosil-$5C_{18}$-AR-II column were selected for the analysis because of the best peak separation. The column temperature was set up at $35^{\circ}C$. The mobile phase consisting of water containing 0.5%(v/v) formic acid and methanol gave good separation between the 3 anthocyanin analytes and internal standard (quercetin 3-O-$\beta$-rutinoside) and peaks with suppressed tail. The MS/MS spectra of each individual anthocyanin standard were detected in positive electron spray ionization (ESI) modes. It was disclosed that the anthocyanin contents of the soybean cv. Gaechuck#1 and cv. Gyeongsang#1 are roughly higher than those of the 10 controls.

The development of new soybean strain with ti and cgy1 recessive allele

  • Choi, Sang Woo;Park, Jun Hyun;Chung, Jong Il
    • Journal of Plant Biotechnology
    • /
    • v.45 no.4
    • /
    • pp.328-332
    • /
    • 2018
  • Soybean [Glycine max (L.) Merr.] seed is an important dietary source of protein, oil, carbohydrate, isoflavone and other various nutrients for humans and animals. However, there are anti-nutritional factors in the raw mature soybeans. Kunitz trypsin inhibitor (KTI) protein and stachyose are the main anti-nutritional factors in soybean seed. The ${\alpha}^{\prime}$-subunit of ${\beta}$-conglycinin protein exhibit poor nutritional and food processing properties. The genetic removal of the KTI and ${\alpha}^{\prime}$-subunit proteins will improve the nutritional value of the soybean seed. The objective of this research was to develop a new soybean strain with KTI and ${\alpha}^{\prime}$-subunit protein free ($titicgy_1cgy_1$ genotype) and proper agronomic traits. A breeding population was developed from the cross of the Bl-1 and 15G1 parents. A total of 168 $F_2$ seeds from the cross of the BL-1 and 15G1 parents were obtained. The segregation ratios of 9: 3: 3: 1 ($104Ti\_Cgy_{1\_}:\;30Ti\_cgy_1cgy_1:\;21cgy_1cgy_1Ti\_:\;13titicgy_1cgy_1$) between the Ti and $Cgy_1$ genes in the $F_2$ seeds were observed (${\chi}^2=5.12$, P=0.5-0.10). Two $F_4$ plant strains with proper agronomical traits and $titicgy_1cgy_1$ genotype (free of both KTI and ${\alpha}^{\prime}$-subunit protein) were selected and harvested. 2 strains (S1 and S2) had yellow seed coats and hilum. The plant height of the S1 strain was 65 centimeters. The 100-seed weight was 29.2 g. The plant height of the S2 strain was 66 centimeters and 100-seed weight was 26.2 g. The two strains selected in this research will be used to improve the new cultivar that will be free of the KTI and ${\alpha}^{\prime}$-subunit proteins.

Effect of Planting Date and Plant Density on Yield and Quality of Soybean Forage in Jeju

  • Kang, Young-Kil;Kim, Hyun-Tae;Cho, Nam-Ki;Kim, Yeong-Chan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.2
    • /
    • pp.95-99
    • /
    • 2001
  • Soybean [Glycine max (L.) Merr.) is known to produce the highest total digestible mutrients (TDN) yield among summer grain legumes in Jeju area but little is known about the effects of cultural practices on forage yield and quality. A determinate soybean cv. Baegunkong was planted on 5 June, 20 June, and 3 July and grown at four plant densities (30, 50, 70 and 90 plants $m^{-2}$ in 1998 in Jeju to evaluate the effects of planting date and plant density on the yield and quality of soybean forage. Days to flowering decreased from 47 to 38 days, average plant height from 61 to 51cm and main stem diameter from 6.31 to 5.00mm as planting was delayed from 5 June to 3 July. Average plant height quadratically increased from 45 to 62cm as plant density increased from 30 to 90 plants $m^{-2}$. Planting date did not affect the average dry matter, crude protein, and TDN yields. The average dry matter and TDN yields displayed a quadratic response to plant density and the optimum plant density for both dry matter and TDN yields was estimated about 60 plants $m^{-2}$. Plant density had no effect on crude protein yield. Planting date did not significantly influence forage quality. The crude protein content was not significantly influenced by plant density. Increasing plant density slightly increased acid detergent fiber content but slightly decreased TDN content.

  • PDF