• Title/Summary/Keyword: source separation

Search Result 454, Processing Time 0.034 seconds

Audio Source Separation Based on Residual Reprojection

  • Cho, Choongsang;Kim, Je Woo;Lee, Sangkeun
    • ETRI Journal
    • /
    • v.37 no.4
    • /
    • pp.780-786
    • /
    • 2015
  • This paper describes an audio source separation that is based on nonnegative matrix factorization (NMF) and expectation maximization (EM). For stable and highperformance separation, an effective auxiliary source separation that extracts source residuals and reprojects them onto proper sources is proposed by taking into account an ambiguous region among sources and a source's refinement. Specifically, an additional NMF (model) is designed for the ambiguous region - whose elements are not easily represented by any existing or predefined NMFs of the sources. The residual signal can be extracted by inserting the aforementioned model into the NMF-EM-based audio separation. Then, it is refined by the weighted parameters of the separation and reprojected onto the separated sources. Experimental results demonstrate that the proposed scheme (outlined above) is more stable and outperforms existing algorithms by, on average, 4.4 dB in terms of the source distortion ratio.

A Study on Separation Distance between Industrial Source and Residential Areas to Avoid Odor Annoyance Using AUSPLUME Model (AUSPLUME 모델을 이용한 악취를 피하기 위한 산업오염원과 주거단지 사이 이격거리에 관한 연구)

  • 정상진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.5
    • /
    • pp.393-400
    • /
    • 2002
  • Separation distance between industrial source and residential areas to avoid odor annoyance was investigated using AUSPLUME model. A Gaussian plume model (AUSPLUME) for the dispersion was used to calculate odor emission from ground level area source. Using the dispersion model to calculate ambient odor concentrations, the separation distance between industrial source and residental areas was defined by %HA (percentage of highly annoyed person) and odor percentile concentration (C98). The result was compared with the separation distance of various nation guidelines for livestock buildings. The calculated separation distance for industrial source showed similar pattern comparing with various guidelines for livestock buildings.

Sound Source Separation Using Interaural Intensity Difference in Closely Spaced Stereo Omnidirectional Microphones (인접 배치된 스테레오 무지향성 마이크로폰 환경에서 양이간 강도차를 활용한 음원 분리 기법)

  • Chun, Chan Jun;Jeong, Seok Hee;Kim, Hong Kook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.191-196
    • /
    • 2013
  • In this paper, the interaural intensity difference (IID)-based sounr source separation method in closely spaced stereo omnidirectional microphones is proposed. First, in order to improve the channel separability, a minimum variance distortionless response (MVDR) beamformer is employed to increase the intensity difference between stereo channels. After that, IID-based sound source separation method is applied. In order to evaluate the performance of the proposed method, source-to-distortion ratio (SDR), source-to-interference ratio (SIR), and sources-to-artifacts ratio (SAR), which are defined as objective evaluation criteria in stereo audio source separation evaluation campaign (SASSEC), are measured. As a result, it was shown from the objective evaluation that the proposed method outperforms a sound source separation method without applying a beamformer.

Post-Processing of IVA-Based 2-Channel Blind Source Separation for Solving the Frequency Bin Permutation Problem (IVA 기반의 2채널 암묵적신호분리에서 주파수빈 뒤섞임 문제 해결을 위한 후처리 과정)

  • Chu, Zhihao;Bae, Keunsung
    • Phonetics and Speech Sciences
    • /
    • v.5 no.4
    • /
    • pp.211-216
    • /
    • 2013
  • The IVA(Independent Vector Analysis) is a well-known FD-ICA method used to solve the frequency permutation problem. It generally works quite well for blind source separation problems, but still needs some improvements in the frequency bin permutation problem. This paper proposes a post-processing method which can improve the source separation performance with the IVA by fixing the remaining frequency permutation problem. The proposed method makes use of the correlation coefficient of power ratio between frequency bins for separated signals with the IVA-based 2-channel source separation. Experimental results verified that the proposed method could fix the remaining frequency permutation problem in the IVA and improve the speech quality of the separated signals.

A Source Separation Algorithm for Stereo Panning Sources (스테레오 패닝 음원을 위한 음원 분리 알고리즘)

  • Baek, Yong-Hyun;Park, Young-Cheol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.2
    • /
    • pp.77-82
    • /
    • 2011
  • In this paper, we investigate source separation algorithms for stereo audio mixed using amplitude panning method. This source separation algorithms can be used in various applications such as up-mixing, speech enhancement, and high quality sound source separation. The methods in this paper estimate the panning angles of individual signals using the principal component analysis being applied in time-frequency tiles of the input signal and independently extract each signal through directional filtering. Performances of the methods were evaluated through computer simulations.

Flexible Nonlinear Learning for Source Separation

  • Park, Seung-Jin
    • Journal of KIEE
    • /
    • v.10 no.1
    • /
    • pp.7-15
    • /
    • 2000
  • Source separation is a statistical method, the goal of which is to separate the linear instantaneous mixtures of statistically independent sources without resorting to any prior knowledge. This paper addresses a source separation algorithm which is able to separate the mixtures of sub- and super-Gaussian sources. The nonlinear function in the proposed algorithm is derived from the generalized Gaussian distribution that is a set of distributions parameterized by a real positive number (Gaussian exponent). Based on the relationship between the kurtosis and the Gaussian exponent, we present a simple and efficient way of selecting proper nonlinear functions for source separation. Useful behavior of the proposed method is demonstrated by computer simulations.

  • PDF

GENERALIZED GAUSSIAN PRIOR FOR ICA (ICA를 위한 Generalized 가우시안 Prior)

  • 최승진
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.467-469
    • /
    • 1999
  • Independent component analysis (ICA)는 주어진 데이터를 통계적으로 독립인 요소들의 선형 결합으로 표시하는 통계학적 방법이다. ICA의 주요한 적용분야중의 하나는 source들의 선형 mixture로부터 어떠한 서전 정보도 없는 상태에서 원래의 통계학적 독립변수인 source를 복원하는 blind separation이다. ICA와 source separation을 위한 다양한 신경 학습 알고리듬이 제시되어왔다. ICA의 학습 알고리듬에서는 비선형 함수가 중요한 역할을 한다. 이 논문에서는 generalized 가우시안 prior를 도입하여 다양한 확률분포를 갖는 source들의 mixture를 분리하는 효율적인 source separation 알고리즘을 제시한다. 모의실험을 통하여 제안된 방법의 우수성을 살펴본다.

  • PDF

Gaussian Processes for Source Separation: Pseudo-likelihood Maximization (유사-가능도 최대화를 통한 가우시안 프로세스 기반 음원분리)

  • Park, Sun-Ho;Choi, Seung-Jin
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.7
    • /
    • pp.417-423
    • /
    • 2008
  • In this paper we present a probabilistic method for source separation in the case here each source has a certain temporal structure. We tackle the problem of source separation by maximum pseudo-likelihood estimation, representing the latent function which characterizes the temporal structure of each source by a random process with a Gaussian prior. The resulting pseudo-likelihood of the data is Gaussian, determined by a mixing matrix as well as by the predictive mean and covariance matrix that can easily be computed by Gaussian process (GP) regression. Gradient-based optimization is applied to estimate the demixing matrix through maximizing the log-pseudo-likelihood of the data. umerical experiments confirm the useful behavior of our method, compared to existing source separation methods.

Convolutive source separation in noisy environments (잡음 환경하에서의 음성 분리)

  • Jang Inseon;Choi Seungjin
    • Proceedings of the KSPS conference
    • /
    • 2003.10a
    • /
    • pp.97-100
    • /
    • 2003
  • This paper addresses a method of convolutive source separation that based on SEONS (Second Order Nonstationary Source Separation) [1] that was originally developed for blind separation of instantaneous mixtures using nonstationarity. In order to tackle this problem, we transform the convolutive BSS problem into multiple short-term instantaneous problems in the frequency domain and separated the instantaneous mixtures in every frequency bin. Moreover, we also employ a H infinity filtering technique in order to reduce the sensor noise effect. Numerical experiments are provided to demonstrate the effectiveness of the proposed approach and compare its performances with existing methods.

  • PDF

Audio Source Separation Method Based on Beamspace-domain Multichannel Non-negative Matrix Factorization, Part I: Beamspace-domain Multichannel Non-negative Matrix Factorization system (빔공간-영역 다채널 비음수 행렬 분해 알고리즘을 이용한 음원 분리 기법 Part I: 빔공간-영역 다채널 비음수 행렬 분해 시스템)

  • Lee, Seok-Jin;Park, Sang-Ha;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.5
    • /
    • pp.317-331
    • /
    • 2012
  • In this paper, we develop a multichannel blind source separation algorithm based on a beamspace transform and the multichannel non-negative matrix factorization (NMF) method. The NMF algorithm is a famous algorithm which is used to solve the source separation problems. In this paper, we consider a beamspace-time-frequency domain data model for multichannel NMF method, and enhance the conventional method using a beamspace transform. Our decomposition algorithm is applied to audio source separation, using a dataset from the international Signal Separation Evaluation Campaign 2010 (SiSEC 2010) for evaluation.