Browse > Article

Gaussian Processes for Source Separation: Pseudo-likelihood Maximization  

Park, Sun-Ho (포항공과대학 컴퓨터공학과)
Choi, Seung-Jin (포항공과대학 컴퓨터공학과)
Abstract
In this paper we present a probabilistic method for source separation in the case here each source has a certain temporal structure. We tackle the problem of source separation by maximum pseudo-likelihood estimation, representing the latent function which characterizes the temporal structure of each source by a random process with a Gaussian prior. The resulting pseudo-likelihood of the data is Gaussian, determined by a mixing matrix as well as by the predictive mean and covariance matrix that can easily be computed by Gaussian process (GP) regression. Gradient-based optimization is applied to estimate the demixing matrix through maximizing the log-pseudo-likelihood of the data. umerical experiments confirm the useful behavior of our method, compared to existing source separation methods.
Keywords
source separation; temporal structure of source; Gaussian process; maximum pseudo-likelihood;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Belouchrani, K. Abed-Merain, J. F. Cardoso, and E. Moulines, A blind source separation technique using second order statistics, IEEE Trans. Signal Processing, Vol.45, pp.434-444, Feb. 1997   DOI   ScienceOn
2 S. Park and S. Choi, Gaussian processes for source separation, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Las Vegas, USA, 2008
3 A. Cichocki and S. Amari, Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications, John Wiley & Sons, Inc., 2002
4 Y. M. Cheung, Dual auto-regressive modelling approach to Gaussian process identification' in Proceedings of IEEE International Conference on Multimedia and Expo, 2001, pp.1256-1259
5 J. Besag, Statistical analysis of non-lattice data, The Statistician, Vol.24, No.3, pp.179-195, 1975   DOI
6 S. Amari, A. Cichocki, and H. H. Yang, A new learning algorithm for blind signal separation, in Advances in Neural Information Processing Systems, D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds., Vol.8. MIT Press, pp. 757-763, 1996
7 M. Seeger, Gaussian processes for machine learning, International Journal of Neural Systems, Vol. 14, No.2, pp.69-106, 2004   DOI   ScienceOn
8 A. Bell and T. Sejnowski, An information maximisation approach to blind separation and blind deconvolution, Neural Computation, Vol.7, pp.1129- 1159, 1995   DOI   ScienceOn
9 S. Amari and J. F. Cardoso, Blind source separation: Semiparametric statistical approach, IEEE Trans. Signal Processing, Vol.45, pp. 2692-2700, 1997   DOI   ScienceOn
10 H. Attias and C. E. Schreiner, Blind source separation and deconvolution: The dynamic component analysis algorithms, Neural Computation, Vol.10, pp.1373-1424, 1998   DOI   ScienceOn
11 S. Park and S. Choi, Source separation with Gaussian process models, in Proceedings of the European Conference on Machine Learning. Warsaw, Poland: Springer, pp.262-273, 2007
12 S. Sundararajan and S. S. Keerthi, Predictive approaches for choosing hyperparameters in Gaussian processes, Neural Computation, Vol.13, pp. 1103-1118, 2001   DOI   ScienceOn
13 C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. MIT Press, 2006
14 B. Pearlmutter and L. Parra, A context-sensitve generalization of ICA, in Proceedings of the International Conference on Neural Information Processing, pp.151-157, 1996
15 L. Csato and M. Opper, Sparse on-line Gaussian processes, Neural Computation, Vol.14, pp. 641-668, 2002   DOI   ScienceOn
16 A. Hyvarinen and E. Oja, A fast fixed-point algorithm for independent component analysis, Neural Computation, Vol.9, pp. 1483-1492, 1997   DOI   ScienceOn