• Title/Summary/Keyword: source location

Search Result 1,041, Processing Time 0.031 seconds

A Basic Study on Effect Analysis of Adjacent Structures due to Explosion of Underground Hydrogen Infrastructure (지하 수소인프라 폭발에 따른 인접 구조물 영향 분석에 대한 기초 연구)

  • Choi, Hyun-Jun;Kim, Sewon;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.21-27
    • /
    • 2022
  • For carbon neutrality, interest in R&D and infrastructure construction for hydrogen energy, an eco-friendly energy source, is growing worldwide. In particular, for hydrogen stations installed in downtown areas, underground hydrogen infrastructure are being considered to increase a safety distance from hydrogen tank explosions to adjacent structures. In order to design an appropriate location and depth of the underground hydrogen infrastructure, it is necessary to evaluate the impact of the explosion of the underground hydrogen infrastructure on adjacent structures. In this paper, a numerical model was developed to analyze the effect of the underground hydrogen infrastructure explosion on adjacent structures, and the over pressure of the hydrogen tank was evaluated using the equivalent TNT (Trinitrotoluene) model. In addition, parametric analysis was performed to estimate the stability of adjacent structures according to the construction conditions of the underground hydrogen infrastructure.

Efficient Sound Control Method in Virtual Environments Using Raytracing Based Diffraction

  • Kim, Jong-Hyun;Choi, Jong-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.81-87
    • /
    • 2022
  • In this paper, we propose diffraction-based sound control method to improve sound immersion in a virtual environment. The proposed technique can express the wave and flow of sound in a physical environment and a pattern similar to diffraction in real-time. Our approach determines whether there is an obstacle from the location of the sound source and then calculates the position of the new sound reflected and diffracted by the obstacle. Based on ray tracing, it determines whether or not it collides with an obstacle, and predicts the sound level of the agent behind the obstacle by using the vector reflected and refraction by the collision. In this process, the sound attenuation according to the distance/material is modeled by attenuating the size of the sound according to the number of reflected/refracted rays. As a result, the diffraction pattern expressed in the physics-based approach was expressed in real time, and it shows that the diffraction pattern also changes as the position of the obstacle is changed, thereby showing the result of naturally spreading the size of the sound. The proposed method restores the diffusion and diffraction characteristics of sound expressed in real life almost similarly.

Shooting sound analysis using convolutional neural networks and long short-term memory (합성곱 신경망과 장단기 메모리를 이용한 사격음 분석 기법)

  • Kang, Se Hyeok;Cho, Ji Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.312-318
    • /
    • 2022
  • This paper proposes a model which classifies the type of guns and information about sound source location using deep neural network. The proposed classification model is composed of convolutional neural networks (CNN) and long short-term memory (LSTM). For training and test the model, we use the Gunshot Audio Forensic Dataset generated by the project supported by the National Institute of Justice (NIJ). The acoustic signals are transformed to Mel-Spectrogram and they are provided as learning and test data for the proposed model. The model is compared with the control model consisting of convolutional neural networks only. The proposed model shows high accuracy more than 90 %.

Clinical Risk Evaluation Using Dose Verification Program of Brachytherapy for Cervical Cancer (자궁경부암 근접치료 시 선량 검증 프로그램을 통한 임상적 위험성 평가)

  • Dong‑Jin, Kang;Young‑Joo, Shin;Jin-Kyu, Kang;Jae‑Yong, Jung;Woo-jin, Lee;Tae-Seong, Baek;Boram, Lee
    • Journal of radiological science and technology
    • /
    • v.45 no.6
    • /
    • pp.553-560
    • /
    • 2022
  • The purpose of this study is to evaluate the clinical risk according to the applicator heterogeneity, mislocation, and tissue heterogeneity correction through a dose verification program during brachytherapy of cervical cancer. We performed image processing with MATLAB on images acquired with CT simulator. The source was modeled and stochiometric calibration and Monte-Carlo algorithm were applied based on dwell time and location to calculate the dose, and the secondary cancer risk was evaluated in the dose verification program. The result calculated by correcting for applicator and tissue heterogeneity showed a maximum dose of about 25% higher. In the bladder, the difference in excess absolute risk according to the heterogeneity correction was not significant. In the rectum, the difference in excess absolute risk was lower than that calculated by correcting applicator and tissue heterogeneity compared to the water-based calculation. In the femur, the water-based calculation result was the lowest, and the result calculated by correcting the applicator and tissue heterogeneity was 10% higher. A maximum of 14% dose difference occurred when the applicator mislocation was 20 mm in the Z-axis. In a future study, it is expected that a system that can independently verify the treatment plan can be developed by automating the interface between the treatment planning system and the dose verification program.

New thyroid models for ICRP pediatric mesh-type reference computational phantoms

  • Yeon Soo Yeom ;Chansoo Choi ;Bangho Shin ;Suhyeon Kim ;Haegin Han ;Sungho Moon ;Gahee Son;Hyeonil Kim;Thang Tat Nguyen;Beom Sun Chung;Se Hyung Lee ;Chan Hyeong Kim
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4698-4707
    • /
    • 2022
  • As part of the ICRP Task Group 103 project, we developed ten thyroid models for the pediatric mesh-type reference computational phantoms (MRCPs). The thyroid is not only a radiosensitive target organ needed for effective dose calculation but an important source region particularly for radioactive iodines. The thyroid models for the pediatric MRCPs were constructed by converting those of the pediatric voxel-type reference computational phantoms (VRCPs) in ICRP Publication 143 to a high-quality mesh format, faithfully maintaining their original topology. At the same time, we improved several anatomical parameters of the thyroid models for the pediatric MRCPs, including the mass, overlying tissue thickness, location, and isthmus dimensions. Absorbed doses to the thyroid for the pediatric MRCPs for photon external exposures were calculated and compared with those of the pediatric VRCPs, finding that the differences between the MRCPs and VRCPs were not significant except for very low energies (<0.03 MeV). Specific absorbed fractions (target ⟵ thyroid) for photon internal exposures were also compared, where significant differences were frequently observed especially for the target organs/tissues close to the thyroid (e.g., a factor of ~1.2-~327 for the thymus as a target) due mainly to anatomical improvement of the MRCP thyroid models.

Development of sound location visualization intelligent control system for using PM hearing impaired users (청각 장애인 PM 이용자를 위한 소리 위치 시각화 지능형 제어 시스템 개발)

  • Yong-Hyeon Jo;Jin Young Choi
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.105-114
    • /
    • 2022
  • This paper is presents an intelligent control system that visualizes the direction of arrival for hearing impaired using personal mobility, and aims to recognize and prevent dangerous situations caused by sound such as alarm sounds and crack sounds on roads. The position estimation method of sound source uses a machine learning classification model characterized by generalized correlated phase transformation based on time difference of arrival. In the experimental environment reproducing the road situations, four classification models learned after extracting learning data according to wind speeds 0km/h, 5.8km/h, 14.2km/h, and 26.4km/h were compared with grid search cross validation, and the Muti-Layer Perceptron(MLP) model with the best performance was applied as the optimal algorithm. When wind occurred, the proposed algorithm showed an average performance improvement of 7.6-11.5% compared to the previous studies.

Prediction for Measurement Range of Vibration due to Blasting of Underground Tunneling (발파 진동으로 인한 지표면 진동 계측 범위 산정에 대한 연구)

  • Kong, Suk-Min;Byun, Yoseph;Choi, Sang-Il;Kim, Jeong-Heum;Kim, Chang-Yong;Lee, Seong-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.7-17
    • /
    • 2024
  • Vibrations were measured at the surface of a GTX-A site to assess the impact of blasting on underground tunneling. A numerical analysis was conducted using the same ground and blast conditions as those at the site, accompanied by a comparative analysis of other GTX-A sites. This analysis determined the maximum vibration velocity at regular intervals directly above the blasting point at each site. The results were compared with domestic and international vibration standards to establish the vibration measurement range. The specified vibration measurement locations in domestic regulations—"measuring from the closest part of the structure's foundation to the blasting source, and if conditions make it impossible, measuring from the nearest surface to it"—were evaluated. Furthermore, this study underscores the significance of considering the tunnel drilling depth and soil conditions when selecting a vibration measurement location.

Assessing the Suitability of Interruption Intervention Strategies in Nursing Medication Administration: A Delphi Study (간호사의 투약업무흐름 중단 중재전략 적합성 연구: 전문가 델파이 조사를 중심으로)

  • Seung Ju Baek;Seung Gyeong Jang;Sang Hee Hong;Soo Ok Han;Won Lee
    • Quality Improvement in Health Care
    • /
    • v.30 no.1
    • /
    • pp.88-104
    • /
    • 2024
  • Purpose: This study explored the suitability of interventions for medication interruption and intervention preferences. Methods: Two rounds of Delphi surveys were conducted with 18 expert panels comprising staff (or charge) nurses, nursing managers, and Quality Improvement (QI) team nurses working in a tertiary general hospital. For 47 situations involving the location of interruption, medication step, and source of interruption, the suitability of three interventions (no-interruption zone, medication safety vest, and education) was evaluated using a 5-point scale. Results: A total of 51 interventions for each situation were found appropriate by satisfying the degree of convergence and consensus. Patients or caregivers, peer nurses, doctors, telephones, and call bells were sources of interruption and were identified as appropriate for the application of interventions. 'Responding to requests and inquiries' by patients or caregivers showed high overall suitability. The nurses' preferred color for the intervention design (no-interruption zone, medication safety vest) is blue text on a yellow background. The priority groups for education related to medication interruptions were patients or caregivers, nurses, and non-nursing staff, in that order. Conclusion: Effective implementation of tailored intervention strategies that consider the specific characteristics of medication interruptions is crucial for mitigating interruptions and enhancing patient safety. Comprehensive educational programs aimed at reducing medication interruptions by improving awareness are necessary. Moreover, future research should evaluate these strategies in clinical settings to ensure their effectiveness in enhancing patient safety.

Dose Assessment for Workers in Accidents (사고 대응 작업자 피폭선량 평가)

  • Jun Hyeok Kim;Sun Hong Yoon;Gil Yong Cha;Jin Hyoung Bai
    • Journal of Radiation Industry
    • /
    • v.17 no.3
    • /
    • pp.265-273
    • /
    • 2023
  • To effectively and safely manage the radiation exposure to nuclear power plant (NPP) workers in accidents, major overseas NPP operators such as the United States, Germany, and France have developed and applied realistic 3D model radiation dose assessment software for workers. Continuous research and development have recently been conducted, such as performing NPP accident management using 3D-VR based on As Low As Reasonably Achievable (ALARA) planning tool. In line with this global trend, it is also required to secure technology to manage radiation exposure of workers in Korea efficiently. Therefore, in this paper, it is described the application method and assessment results of radiation exposure scenarios for workers in response to accidents assessment technology, which is one of the fundamental technologies for constructing a realistic platform to be utilized for radiation exposure prediction, diagnosis, management, and training simulations following accidents. First, the post-accident sampling after the Loss of Coolant Accident(LOCA) was selected as the accident and response scenario, and the assessment area related to this work was established. Subsequently, the structures within the assessment area were modeled using MCNP, and the radiation source of the equipment was inputted. Based on this, the radiation dose distribution in the assessment area was assessed. Afterward, considering the three principles of external radiation protection (time, distance, and shielding) detailed work scenarios were developed by varying the number of workers, the presence or absence of a shield, and the location of the shield. The radiation exposure doses received by workers were compared and analyzed for each scenario, and based on the results, the optimal accident response scenario was derived. The results of this study plan to be utilized as a fundamental technology to ensure the safety of workers through simulations targeting various reactor types and accident response scenarios in the future. Furthermore, it is expected to secure the possibility of developing a data-based ALARA decision support system for predicting radiation exposure dose at NPP sites.

Smart Tour based on WEB (WEB 기반 스마트 관광)

  • Chang-Pyoung Han;You-Sik Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.4
    • /
    • pp.21-28
    • /
    • 2024
  • Nowadays, based on the 4th Industrial Revolution, by using the CHATGPT function and 3D virtual reality technology, anyone can easily open a virtual environment WEB-based, smart tourism OPEN source and travel destination without having to directly visit the travel location in the real world. Using the API function, it provides the convenience of virtual tourism. However, this function does not work if the travel transportation system is suddenly changed due to sudden bad weather, travel operation information cannot be checked in real time, and due to a lack of flight cancellation information and passenger ship operation information, it cannot be used until the plane or ferry departs normally. A very inconvenient problem arises where you have to wait a long time in the waiting room. Therefore, in this paper, in order to solve this problem, automatic duty-free product information and automatic product payment functions were added even when passenger ship cancellations and operation information suddenly occur due to bad weather and multiple products are purchased during the trip. In addition, the computer simulation experiment was conducted on a WEB basis so that anyone can conveniently travel smartly.