• Title/Summary/Keyword: source driver

Search Result 203, Processing Time 0.025 seconds

A Novel Current-fed Energy Recovery Sustaining Driver for Plasma Display Panel(PDP)

  • Han, Sang-Kyoo;Moon, Gun-Woo;Youn, Myung-Joong
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.39-45
    • /
    • 2004
  • A novel current-fed energy-recovery sustaining driver (CFERSD) for a PDP is proposed in this paper. Its main idea is to recover the energy stored in the PDP or to inject the input source energy to the PDP by using the current source built-up in the energy recovery inductor. This method provides zero-voltage-switching (ZVS) of all main power switches, the reduction of EMI, and more improved operational voltage margins with the aid of the discharge current compensation. In addition, since the current flowing through the energy recovery inductor can compensate the plasma discharge current flowing through the conducting power switches, the current stress through all main power switches can be considerably reduced. Furthermore, it features a low conduction loss and fast transient time. Operations, features and design considerations are presented and verified experimentally on a 1020${\times}$l06mm sized PDP, 50kHz-switching frequency, and sustaining voltage 140V based prototype.

Evaluation of Vehicle Seat Rattle Noise Using Coherence Function Technique (기여도 함수 기법에 의한 차량 시트의 래틀 노이즈 규명)

  • Seo, Bum-June;Jeong, Jae-Eun;Park, Goon-Dong;Kim, Hak-Gyun;Park, Sang-Do;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.8
    • /
    • pp.774-780
    • /
    • 2011
  • Recently, customers have been concerned about vehicle NVH depending on vehicle designing and manufacturing technologies development. In choosing vehicle, vehicle NVH is becoming the most important factor to customers. Especially, a seat is the final stage of vibration transfer path to passengers from all sources of vibration like engine, transmission and etc. And seat is the nearest component from driver's ear. For this reason, seat is the most important component that directly related to ride comfort for passengers. And driver can be influenced sensitively by BSR caused by seat. Thus, evaluating the vibration characteristics of vehicle seat and BSR caused by vehicle seat is necessary to reduce the seat BSR. The rattle noise occurred from seat has evaluated through sound source visualization and multi-dimensional spectral analysis - coherence function technique in this paper. Vibration characteristics of the seat has verified through modal test.

New LED Current Balancing Scheme Using C-Fed Z-Source Converter (전류형 Z-Source 컨버터를 이용한 새로운 LED 전류 밸런싱 기법)

  • Hong, Daheon;Cha, Honnyong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.9-15
    • /
    • 2021
  • In multi-string light-emitting diode (LED) driver system, current balancing is crucial because the brightness of LED is directly related to its forward current. This paper presents a novel LED current balancing topology using current-fed Z-source converter. With the proposed structure, currents flowing through two LED strings are automatically balanced owing to the charge-balance condition on capacitors. Operation of the proposed converter is simple and the proposed converter uses only one active switch and one diode. Moreover, low-side gate driving can be used to operate the active switch. To verify the operation of the proposed LED current balancing converter, a prototype is built and tested with different numbers of LEDs.

A Low-Power High Slew-Rate Rail to Rail Dual Buffer Amplifier for LCD output Driver (LCD 드라이버에 적용 가능한 저소비전력 및 높은 슬루율을 갖는 이중 레일 투 레일 버퍼 증폭기)

  • Lee, Min-woo;Kang, Byung-jun;Kim, Han-seul;Han, Jung-woo;Son, Sang-hee;Jung, Won-sup
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.726-729
    • /
    • 2013
  • In this paper, low power and high slew rate CMOS rail to rail input/output opamp applicable for ouput buffer amp, in LCD source driver IC, is proposed. Proposed op-amp, is realized the characteristics of low power consumption and high slew rate adding the newly designed control stage of class-B to the conventional output stage of class-AB. From the simulation results, we know that the proposed opamp buffer can drive a 1000pF capacitive load with a 6.5V/us slew-rate, while drawing only the the power consumption of 1.19mW from 3.3V power supply.

  • PDF

Personal Driving Style based ADAS Customization using Machine Learning for Public Driving Safety

  • Giyoung Hwang;Dongjun Jung;Yunyeong Goh;Jong-Moon Chung
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.39-47
    • /
    • 2023
  • The development of autonomous driving and Advanced Driver Assistance System (ADAS) technology has grown rapidly in recent years. As most traffic accidents occur due to human error, self-driving vehicles can drastically reduce the number of accidents and crashes that occur on the roads today. Obviously, technical advancements in autonomous driving can lead to improved public driving safety. However, due to the current limitations in technology and lack of public trust in self-driving cars (and drones), the actual use of Autonomous Vehicles (AVs) is still significantly low. According to prior studies, people's acceptance of an AV is mainly determined by trust. It is proven that people still feel much more comfortable in personalized ADAS, designed with the way people drive. Based on such needs, a new attempt for a customized ADAS considering each driver's driving style is proposed in this paper. Each driver's behavior is divided into two categories: assertive and defensive. In this paper, a novel customized ADAS algorithm with high classification accuracy is designed, which divides each driver based on their driving style. Each driver's driving data is collected and simulated using CARLA, which is an open-source autonomous driving simulator. In addition, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) machine learning algorithms are used to optimize the ADAS parameters. The proposed scheme results in a high classification accuracy of time series driving data. Furthermore, among the vast amount of CARLA-based feature data extracted from the drivers, distinguishable driving features are collected selectively using Support Vector Machine (SVM) technology by comparing the amount of influence on the classification of the two categories. Therefore, by extracting distinguishable features and eliminating outliers using SVM, the classification accuracy is significantly improved. Based on this classification, the ADAS sensors can be made more sensitive for the case of assertive drivers, enabling more advanced driving safety support. The proposed technology of this paper is especially important because currently, the state-of-the-art level of autonomous driving is at level 3 (based on the SAE International driving automation standards), which requires advanced functions that can assist drivers using ADAS technology.

Study for Visualization of Rotating Sound Source Using Microphone Array (마이크로폰 어레이를 이용한 회전하는 소음원 가시화에 관한 연구)

  • Rhee, Wook;Park, Sung;Lee, Ja-Hyung;Kim, Jai-Moo;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.565-573
    • /
    • 2006
  • Acoustic analysis of a moving sound source required that the measured sound signals be do-Dopplerized and restored as of the original emission signals. The purpose of this research is development of beamforming technique can be applied to the rotor noise source identification. For the do-Dopplerization and reconstruction of emitted sound wave, Forward Propagation Method is applied to the time domain beamforming technique. And validation test were performed using rotating sound source constructed by bended pipe and horn driver. In the validation test using sinusoidal sound wave, sufficient performance of signal processing can be seen, and the effect of measuring duration for accuracy was compared. In the prop-rotor measurements, the acoustic source locations were successfully verified in varying positions for different frequencies and collective pitch angle, in hover condition.

Implementation of Linux RTAI Open CNC System Based on EtherCAT Network (EtherCAT 네트워크 기반 리눅스 RTAI 개방형 CNC 시스템 구현)

  • Park, Sung-Mun;An, Cheol-Jin;Kim, Hyoungwoo;Yi, Hyun-Chul;Choi, Joon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.977-981
    • /
    • 2015
  • We propose a method for the implementation of an EtherCAT communication bus in a Linux-based open source Computerized Numerical Control (CNC) system. Recently, increasingly more CNC systems support real-time Ethernet protocols such as EtherCAT, which is a high-performance industrial communication protocol. For real-time CNC control over an Ethernet-based protocol, an additional layer driver needs to be implemented between the CNC system and the master of industrial communication protocol. Among the various solutions for the connection layer driver, we employ a Hardware Abstraction Layer (HAL) driver based on Linux. The operation of the implemented CNC system is demonstrated and confirmed by Hal Meter, which is used to observe the pins, signals, or parameters of HAL.

Co-Pilot Agent for Vehicle/Driver Cooperative and Autonomous Driving

  • Noh, Samyeul;Park, Byungjae;An, Kyounghwan;Koo, Yongbon;Han, Wooyong
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.1032-1043
    • /
    • 2015
  • ETRI's Co-Pilot project is aimed at the development of an automated vehicle that cooperates with a driver and interacts with other vehicles on the road while obeying traffic rules without collisions. This paper presents a core block within the Co-Pilot system; the block is named "Co-Pilot agent" and consists of several main modules, such as road map generation, decision-making, and trajectory generation. The road map generation builds road map data to provide enhanced and detailed map data. The decision-making, designed to serve situation assessment and behavior planning, evaluates a collision risk of traffic situations and determines maneuvers to follow a global path as well as to avoid collisions. The trajectory generation generates a trajectory to achieve the given maneuver by the decision-making module. The system is implemented in an open-source robot operating system to provide a reusable, hardware-independent software platform; it is then tested on a closed road with other vehicles in several scenarios similar to real road environments to verify that it works properly for cooperative driving with a driver and automated driving.

Drowsiness Driving Prevention System using Bone Conduction Device

  • Hahm, SangWoo;Park, Hyungwoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4518-4540
    • /
    • 2019
  • With the development of IT convergence technology, autonomous driving has gradually developed; however, the vehicle is still operated by the driver, who should always be in good health - but sometimes, this is not the case. It is especially dangerous to drive when drowsy, and unable to fully concentrate on driving, such as when taking certain medicines, or through fatigue. Drowsy driving is at least eight times more dangerous than normal driving, and as dangerous as drunk driving. Previous research has looked at technology to detect drowsiness, in order to wake up drivers when necessary, or to safely stop the vehicle. Furthermore, many studies have been conducted to find out when drowsiness occurs. However, it is more desirable for the driver to take sufficient rest during a break, in order to be able to continue to focus and drive. In other words, it is important to maintain a normal state before drowsiness. In this study, we introduce a sound source to increase driver concentration and prevent drowsiness, another that can improve the quality of sleep, and a system that produces these sound sources. The proposed system has a noise reduction effect of about 15 dB. We have confirmed that the proposed sound induces an EEG of the desired form.

Influence of Device Parameters Spread on Current Distribution of Paralleled Silicon Carbide MOSFETs

  • Ke, Junji;Zhao, Zhibin;Sun, Peng;Huang, Huazhen;Abuogo, James;Cui, Xiang
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.1054-1067
    • /
    • 2019
  • This paper systematically investigates the influence of device parameters spread on the current distribution of paralleled silicon carbide (SiC) MOSFETs. First, a variation coefficient is introduced and used as the evaluating norm for the parameters spread. Then a sample of 30 SiC MOSFET devices from the same batch of a well-known company is selected and tested under the same conditions as those on datasheet. It is found that there is big difference among parameters spread. Furthermore, comprehensive theoretical and simulation analyses are carried out to study the sensitivity of the current imbalance to variations of the device parameters. Based on the concept of the control variable method, the influence of each device parameter on the steady-state and transient current distributions of paralleled SiC MOSFETs are verified separately by experiments. Finally, some screening suggestions of devices or chips before parallel-connection are provided in terms of different applications and different driver configurations.