• Title/Summary/Keyword: sound-damping

Search Result 154, Processing Time 0.023 seconds

Active control of sound fields from vibrating plates using piezoelectric and viscoelastic material (압전재료와 점탄성재료를 이용한 평판진동 음장의 능동제어)

  • 강영규;김재환;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.311-315
    • /
    • 2002
  • The coupled finite/boundary element method is used in numerical analysis for acoustic radiation from the vibration of rectangular composite plate which is simply supported. This analysis is validated using the Wallace equation for an isotropic plate. Active control of sound fields has been carried out using 3 pairs of piezoelectric sensor/actuator and a pair of viscoelastic material by passive constrained layer damping treatment. The results show that the optimal placement of piezoelectric sensor/actuator and VE patch is required to control the sound fields from a vibrating composite plate.

  • PDF

Comparison of Performance of Sound Insulation Panel for Transformer (변압기용 차음판의 성능 비교)

  • Jeong, H.E.;Choi, B.K.;Kim, H.J.;Gu, D.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1302-1305
    • /
    • 2006
  • Recently, demands for the reduction of noise generated by transformers have been increasing. Accordingly the noise of transformer occasion displeasing to residents therefore the transformer needs to decrease of noise. One method of reduction such a noise is to build a free-standing enclosure of concrete and steel plates around the transformer, however, this method has some disadvantages, for example, a lage area is needed for equipment installation. In the paper, the vibration and noise effect which is transferred from reinforce channel to insulation panel generated by transformer have been identified for the several kinds of insulation panel and damping sheet experimentally.

  • PDF

A Case Study on Inside Noise Reduction of Agricultural Tractor Cab(II) -Noise Reduction- (농용 트랙터의 안전캡 내부 소음 감소에 관한 연구(II) -소음 감소 효과-)

  • 유동호;김경욱;최창현
    • Journal of Biosystems Engineering
    • /
    • v.20 no.2
    • /
    • pp.127-132
    • /
    • 1995
  • In the first part of this paper, an analysis of the cab noise of a selected agricultural tractor was presented. In this study, using the results of the previous analysis, two passive noise control measures of the sound insulation and absorption were conducted to reduce the noise level inside the cab. These measures of noise control reduced the total noise level by 6.2㏈(A) at the operator position inside the cab. In order to further reduce the cab noise, particularly, of lower frequencies than 630Hz, stiffness and damping of the floor panel should be enforced. It was also suggested that a proper suspension for the cab mounting is necessary to reduce the level of structure-born noises.

  • PDF

On Design of Half-Wave Resonators for Acoustic Damping in a Model Combustion Chamber (모형 연소실내 음향 감쇠를 위한 반파장 공명기의 설계에 관한 연구)

  • Park, Ju-Hyun;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.18-21
    • /
    • 2008
  • Acoustic design parameters of a half-wave resonator are studied experimentally for acoustic stability in a model combustor. According to standard acoustic-test procedures, acoustic-pressure signals are measured. Quantitative acoustic properties of damping factor and sound absorption coefficient are evaluated and thereby, the acoustic damping capacity of the resonator is characterized. The diameter and the number of a half-wave resonator, its distribution are selected as design parameters for optimal tuning of the resonator. Acoustic damping capacity increases as the resonators with diameter increases. The optimum number of resonators or the optimum open-area ratio decreases as boundary absorption decreases.

  • PDF

A Study on the Acoustic Absorption Character of a Helmholtz Resonator in Model Chamber (모형연소실에 장착한 헬름홀츠 공명기의 흡음특성에 관한 연구)

  • Park, Ju-Hyun;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.399-402
    • /
    • 2009
  • Acoustic design parameters of a Helmholtz resonator are studied experimentally and numerically for acoustic stability in a model acoustic tube. According to standard acoustic-test procedures, acoustic-pressure signals are measured. Quantitative acoustic properties of sound absorption coefficient are evaluated and thereby, the acoustic damping capacity of the resonator is characterized. Helmholtz resonator on spring-damper system use were understanding for acoustic damping. The length of orifice and the volume of cavity of resonator are selected as design parameters for tuning of the resonator. Acoustic- damping capacity of the resonator increases with its cavity volume. And orifice length as increases with acoustic damping capacity was decreased.

  • PDF

A Numerical Analysis of Acoustic Behavior in Combustion Chamber with Acoustic Cavity (음향공이 장착된 로켓엔진 연소실의 음향장 수치해석)

  • 손채훈;김영목
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.249-252
    • /
    • 2003
  • Acoustic behavior in combustion chamber with acoustic cavity is numerically investigated by adopting linear acoustic analysis. Helmholtz-type resonator is employed as a cavity model to suppress acoustic instability. The tuning frequency of acoustic cavity is adjusted by varying the sound speed in acoustic cavity. Acoustic pressure responses of chamber to acoustic oscillating excitation are shown md acoustic damping effect of acoustic cavity is quantified by damping factor. As the tuning frequency approaches the target frequency of the resonant mode, mode split from the original resonant mode to lower and upper modes appears and thereby damping effect is degraded. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic cavity tuned to maximum frequency of those of the possible splitted upper modes.

  • PDF

A Prediction of Sound Radiation from Tire Treadband Vibration (타이어 트레드밴드 진동 음향방사 예측)

  • Byoung-Sam Kim;Seong-Gon Cho
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.1
    • /
    • pp.133-139
    • /
    • 1997
  • The noise generated from a treadband mechanism of a tire has been the subject of this research. In particular, the treadband has been treated as an infinite tensioned beam resting on an elastic foundation which includes damping. The main objective is to predict the sound power generated from a system mentioned above by locating harmonic point forces representing the excitation of treadband at the contact patch. It is possible to predict the sound power radiated from this structure by using wavenumber transformation techniques. In order to find out the minimum radiated sound power, All parameters were varied. Thus, this model can be used as a tire design guide for selecting parameters which produces the minimum noise radiation.

  • PDF

A Numerical Study on Acoustic Behavior in Combustion Chamber with Acoustic Cavity (음향공이 장착된 로켓엔진 연소실의 음향장 해석)

  • Sohn, Chae-Hoon;Kim, Young-Mog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.28-37
    • /
    • 2002
  • Acoustic behavior in combustion chamber with acoustoc cavity is numerically investigated by adopting linear acoustic analysis. Helmholtz-type resonator is employed as a cavity model to suppress acoustic instability passively. The tuning frequency of acoustic cavity is adjusted by varying the sound speed in acoustic cavity. Through harmonic analysis, acoustic pressure responses of chamber to acoustic oscillating excitation are shown and the resonant acoustic modes are identified. Acoustic damping effect of acoustic cavity is quantified by damping factor. As the tuning frequency approaches the target frequency of the resonant mode to be suppressed, mode split from the original resonant mode to lower and upper modes appears and thereby damping effect is degraded significantly. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic cavity tuned to maximum frequency of those of the possible splitted upper modes.

Effects of Orifice Length on Helmholtz Resonator (음향공 오리피스 길이 변화에 따른 감쇠 효과)

  • Song, Jae-Gang;Ko, Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.36-39
    • /
    • 2008
  • Combustion instability is one of the most difficult problems in the development of liquid rocket engines. One of the damping devices for combustion instability is helmholtz resonator. Orifice length is one of factors for designing it. In this study, effects of orifice length are investigated by an experimental tests and a linear acoustic analysis. Damping capacity was improved by the increase of the length of resonator. And the results of an experimental tests and a linear acoustic analysis are showed similar tendency. Also, effects of supplied SPL(sound pressure level) are investigated and the results show that nonlinear effects are increase by the increase of supplied SPL.

  • PDF

SIMPLE MODELS TO INVESTIGATE THE EFFECT OF VELOCITY DEPENDENT FRICTION ON THE DISC BRAKE SQUEAL NOISE

  • Shin, K.;Brennan, M.J.;Joe, Y.G.;Oh, J.E.
    • International Journal of Automotive Technology
    • /
    • v.5 no.1
    • /
    • pp.61-67
    • /
    • 2004
  • This paper suggests two simple two-degree-of-freedom models to describe the dynamical interaction between the pad and the disc of a disc brake system. Separate models for in-plane and out -of-plane vibration are described. Although a brake pad and disc have many modes of vibration, the interaction between a single mode of each component is considered as this is thought to be crucial for brake noise. For both models, the pad and the disc are connected by a sliding friction interface having a velocity dependent friction coefficient. In this paper, it is shown that this friction model acts as negative damping in the system that describes the in-plane vibration, and as negative stiffness in system that describes the out-of-plane vibration. Stability analysis is performed to investigate the conditions under which the systems become unstable. The results of the stability analysis show that the damping is the most important parameter for in-plane vibration, whereas the stiffness is the most important parameter for the out-of-plane vibration.