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A Prediction of Sound Radiation from
Tire Treadband Vibration
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ABSTRACT

The noise generated from a treadband mechanism of a tire has been the subject of this research. In
particular, the treadband has been treated as an infinite tensioned beam resting on an elastic foundation
which includes damping. The main objective is to predict the sound power generated from a system
mentioned above by locating harmonic point forces representing the excitation of treadband at the
contact patch. It is possible to predict the sound power radiated from this structure by using wavenumber
transformation techniques. In order to find out the minimum radiated sound power, All parameters were
varied. Thus, this model can be used as a tire design guide for selecting parameters which produces the

minimum noise radiation.
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1. Introduction

The model of tread element may be used to
predict the force exerted on the treadband by the
treadband by the tread elements produced by con-
tacting the road. Here, this tread element model
assumed to be an infinite beam model so that tread-
band can be treat as an infinite alastic beam. the
elastic foundation represents the sidewall stiffness
supporting the treadband. By using wavenumber
transformation techniques make possible to predict
the sound power radiated by such a structure.

The problems in sound radiation of elastic beam
under the action of harmonic point forces moving
at subsonic speeds is studied. The reaction due to
light fluid loading on the vibratory response of the
beam is taken into account. The beam is assumed
to occupy the plane z=0. The material of beam
and the elastic foundation are also assumed to be
lossless and governed by the law of Bemolli-Euler
berm theory including a tension force(T), damping
coefficient(C), stiffness of foundation(k;).

Mogilevskii® studied the problems related sound
radiation from beams under the action of a moving
harmonic point force in the absence of an elastic
foundation. Keltie? computed the sound power
produced by a point-forced elastic beam and
obtained quantitative measures of the power pro-
duced by the flexural nearfield and the propagating
portions of the beam‘s response.

The non-dimensional sound power is derived by
integrating of the surface intensity distribution over
the entire beam. The expression for sound power is
integrated numerically and the results are examined
as a function of Mach number, M, the wavenum-
ber ratio, 7, and stiffness factor, ¥.

All parameters may be varied to allow for the
identification of optimal values(i.e., the set of
parameters which result in minimum radiated sound
power). Hence, this model lends itself to the prob-
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lem of treadband sound power minimization. Also,
the method of superposition suggests that an arbit-
ary periodic point load may be applied. Such an
input causes altering the sequence of the tread
element and pitch length, which provides another
tool for the minimization of radiated sound power.

The purpose of this paper is to explain the re-
sponse of a sound power over a number of non--
dinensional parameters describing forcing velocity,
treadband tension, treadband stiffness, treadband
damping and foundation stiffness.

2. Formulation of Sound Power

In this section, a mathematical modeling and the
key procedures to predict the sound power radiated
by such a structure will be described. Under the
assumption of a infinite beam occupies the plane z
=0 and the beam is excited by a harmonically
oscillating point force moving in the x-direction at
the velocity ¥, which is shown in Figure 1.

The space where z>0 is filled with the air. The
infinite beam represents an “unrolled” tire. The
sound radiated from the treadband on either side of
the contact patch. The equation of motion for the

beam is :
2%u 2% 2% au

Do tPA—p —T5z +C— +kU
=F, 8 (x— ¥ )& —pl(x,2=0,t) =++eeseer (1)

Where u(x,t) is the transverse displacement of
the beam, @ is the circular driving frequency, D
is the flexural stiffness of the beam; P,A is the
mass per unit length of the beam, T is the axial
tension force; C is the foundation damping
coefficient ; k, is the foundation stiffness, F, is the
input force amplitude, p is the acoustic pressure
induced by the surface motion, and & (x) is the
Dirac delta function. The pressure distribution in-
duced in the air by the vibration beam is denoted
by p(x,zt) satisfying the wave equation in two
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Fig. 1 Treadband vibration model for moving harmonic point forces

dimensional space, and is given by :
[ 3t 3% 1 az] 0

o T o7 ToF adl”

Where ¢, is the sound speed in the acoustic
medium. The boundary condition at z=0 is given
by

9%uw _ ap

Po 38 =7 oz

Where P, is the mass density of the acoustic

2=0

medium. By applying the spatial Fourier
Transformation, the equation becomes

FT(f(x))J'

7 f(x)efxdx
-

Where € is the wave unmber variable. In con-
junction with the boundary condition, the time
averaged radiated sound power may be obtained by
integrating the surface of acoustic intensity distribu-
tion over the entire beam. The force function in
the wavenumber domain may be written as :
?(5,t)=FOe(5"°+‘"" .............................. (4)

This form implies that in the wavenumber
domain, the transformed displacement U( €,t) and

pressure p( §,z,t) both will have the common fac-
tor el€ Yot e,

That is,
U(&,)=U(&)elE ot @l i (5a)
ﬁ(f,z,t):p(e,z)ej(eu°+w)‘ ..................... (5b)

By substituting equation (5a) and (5b) into the
beam equation (1) and the acoustic equation (2),
it is easily found that;

shatioiotdatx] Mi2d Mis ‘ord 3@

p(gyzzo)zzau(&-) .............................. (7)
Where,
1P € Vot w)?
Vik+ME)—¢
Zy=[D§*— PA(§ v+ @)*+TE2+K]
Fil(E ¥ gF @)C] woverervemmennrienenina, (8)
Solving the wave equation,

2 )2
[szz S yz+ ) ~Ez]p(X,Z)=0,

Z,=

2

[gzz +((ko+M{-‘)2—$2)]p(s,Z)=0, ..... (9)

Therefore, pressure p( £,z) is
p(g z)= p(f z2=0)e” )kzz ....................... (10)
[—]~/52~ K AME )1 £2>(K,+ME£ )2,
VK AME =2 £ (Ko+M& )2

Where, M is the Mach number which is same as
V/co, and K, is the acoustic wavenumber which is
equal to @/c,. Surface intensity distribution I(x)
1s

1
I(X)=—2"Re[P(X)V*(x)] ....................... (12)

Where, P(x) is surface pressure and V*(x) is a
conjugate form of surface velocity. By integrating
the surface intensity distribution over entire beam,
sound power can be obtained from the following
formula for a unit width.
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=_;_Reh‘_°°mp(x)v*(x)dx], ................ (13)
=—;—Re[[_°:°[ I P fl)e_jé"‘dfl]'
[ZL”J‘_"‘; V*(fz)ejezxdfz]dx] ............. (14)

Where, &, £, are dummy vanable. There can
be written as follows;

W—-——ReU U*m gy

U V*(e ] [z_ne—xereg)x]dx].. (15)

—En'—.[_w e KE gy = (& | — &,) oo (16)
Thererfore,
w=iReU°° P(&)V*(s)ds] ---------- (17)
4n —

Surface pressure and a Conjugate form of surface
velocity in wavenumber domain are
JPo( §V+w)?

P(¢&,2= \_J(K0+M$>‘ géU(E) (18)

VH(E)=j(EVH@)UR(E) orrmrmrrmrinnns (19)
By substituting equation of surface pressure and
conjugate velocity into a sound power spectrum,
the sound power can be obtained as follows;
(§V+ed)
—oo \/(K0+M$ )_

lU(E) ‘de] ................................ (20)

I
W= 4—”'Re

Referring to Equation (11), it is seen that the
denominator of the integral in Equation (20) is real
only over a restricted interval of the integration
range. Specializing to the case of subsonic motion
of the traveling force, the limits within which k, is
real are given by :

£ = 1_:;4 <t< lKOM By (21)
Let &§ =K, &. (for dimensionless)
PFo’
:W | | GRREE T LTI R RT T TR PRRTPPOPRPR (22)

The nondimensional sound power radiated from
the beam is given by

$2 a3v az—tzdt

-]

Where I1 is the nondimensional sound power
obtained bv multiplying the dimensional power by
the factor 47 @ P2A%/ P F 2. In the integral, &,
=—1/(1+M) and £,=1/(1—M) are the shifted
limits of the integration range; M= v /¢, is the
Mach number of the moving force; @ =1+MY ;
¥ =K /k;, is the ratio of the acoustic wavenumber
to the bending wavenumber; k,=( P, A@?/D)"* is
the free bending wavenumber, and @,=P.c;/ P
Ac12 is the fluid loading factor. £, is the
volume density of the air, ¢ is the longitudinal
wave speed of the beam material and ¥ is founda-
tion stiffness factor. Ti(T/(2vkD)) is the axial
tension factor, and B=C/(2v/ PAk,) is founda-

tion damping factor.
3. Numerical Results and Discussion

The curves presented show the variation of beam
response and radiated sound power over a range of

136

e, (YT 42T 72w = P+ W)/ @?= TP+ 28 W as/a? = "+ a,a/77]

(23)

the various nondimensional parameters. Identifying
further these parameters of passenger vehicle tires
is the subject of further investigation. To investi-
gate the effects of the stiffness factor(¥) and ten-
sion(T) for the radiated sound power level, the
sound power was calculated as a function of the
variables, ¥, with a few different values of the
force Mach number, M, and for a constant values
of the wavenumber ratio, Y. The sound power
radiated from a beam under the action of one point
forces is typically represented by the curves in
Figures.

The relative sound power level versus stiffness
and Mach unmber for the air loading are shown in
Figure 2. For a case of M=0, the most striking
feature is relatively high radiation peaks emerge
around the value of ¥=1.0 for higher frequency.
This phenomenon can be called a resonance
radiation. As the Mach number increase two diffe-
rent radiated sound power peaks are build up. For
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example, if the Mach number M=0.5, one of the
peaks is located in the range of ¥=1.0 and the
other is in ¥>1.0, For the higher frequency
range, the sound power level is decreased if ¥>
1.5 like shown in figure, while it is increasing n
the range of ¥>>1.0 as the driving frequency gets

Relative Sound Power

Relative Sound Power

ih)
Fig. 2 Relative sound power levei versus stiffness factor and mach number

(a) T,=0.4, B=0.01, ¥Y=0.2, (b)T,=0.4, B=0.1,

4. Conclusion

The effects on the sound power emitted by har-
monic point forces moving on infinite elastic beams
are investigated and also the effects of foundation
stiffness, tensin, damping and Mach number on
the radiated sound power are investigated in this
paper, the following conclusions can be drawn:
1) The values of stiffness factor(¥) give an im-
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lower. The figure shows that the sound power
level increased effectively on the compressive
forces rather than tensile forces. It is found that the
forces due to the Mach number and tensile affects
the location of the radiated sound power peak.
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Y=0.2, (c)T,=0.4, p=0.5, Y=0.2

portant effect on the radiated sound power

levels. For the case of M=0, A resonance
radiation and a coincidence peak are produced
close to the value of ¥=1.0. This phe-
nomenon attributed to the doppler shift effect.

2) When tensile force is applied, the sound power
gets larger the case of compressive force is
applied.

3) The strong coincidence radiation peak for M=0
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Fig. 4 Relative sound power level versus wavenumber and mach number (Bp=0.1, ¥=1.5, T,=0.0)
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