• Title/Summary/Keyword: sound spectrum

Search Result 305, Processing Time 0.023 seconds

Physical modeling synthesizing of 25 strings Gayageum using white noise as exciter (화이트 노이즈를 익사이터로 이용하는 25현 가야금의 피지컬 모델링 신디사이징)

  • Bae, June;Kim, Jangyoung;Yang, Yoongi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.5
    • /
    • pp.740-746
    • /
    • 2018
  • Up until now, attempts to produce computer instruments have been largely focused on two types of sampling methods and physical modeling. Since the sampling method removes much of the harmonics in the sampling process, the effect of exciter that emphasizing the harmonic of the strings are mini. However, the physical modeling method can produce a lot of harmonics, and by emphasizing the harmonics of a particular frequency band among these harmonics, it is possible to produce a sound more like a lively sound. In this paper, we propose a method of using white noise in realizing exciter emphasizing harmonics of pre - specified frequency band in prefectural physical modeling. And comparing the envelope and spectrum of the Gayageum sound, we confirmed that the physical modeling method with the exciter is more suitable for the actual Gayageum sound than the sampling method and the conventional physical modeling method.

An Implementation of Sound Enhanced MPEG-1 Audio Decoder on Embedded OS Platform (음질향상 알고리즘을 내장한 MPEG-1 오디오 디코더의 Embedded OS 플랫폼에의 구현)

  • Hong, Sung-Min;Park, Kyu-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.8
    • /
    • pp.958-966
    • /
    • 2007
  • In this paper, we implement a sound-enhanced MPEG-1 audio decoder on embedded OS Platform. Low bit rate lossy audio codecs such as MP3, OGG, and AAC for mitigating the problems in storage space and network bandwidth suffer a major common problem such as a loss of high frequency fidelity of audio signal. This high frequency loss will reproduce only a band-limited low-frequency part of audio in the standard CD-quality audio. In order to overcome this problem, we embedded a sound enhancement algorithm into the MPEG-1 audio decoder and then the algorithms optimized according to the characteristic of the MPEG-1 audio layer I, II, III were implemented on an embedded OS platform. From the experimental results with spectrum analysis and listening test, we confirm the superiority of the proposed system compared to the standard MPEG-1 audio decoder.

  • PDF

A Study on the Noise Emission Characteristics of Turbo Axial Flow Fan by Experimental Method (터보형송풍기의 소음 방사특성에 관한 실험적 연구)

  • 김동규;백종진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.271-277
    • /
    • 2003
  • Recently as the environmental noise getting influential social problem, it is the fact that the demand on noise reduction increases with the advance of the standard of living. Therefore increasing the interest on the noise in common, it is eagerly demanded that the endeavour for reducing the noise of the rotating machinery, especially the machinery related a flowing including the household electric products, which is pointed out the primary noise source in environment. As proceeding study for fan noise, theory of fan noise property is arranged and this control method is shown. Blade passage noise of total noise spectrum. Thus in the aspect of noise reduction, noise source and identification of noise radiation characteristics of axial flow fan are demanded in detail. The sound source is analyzed by using sound pressure and sound intensity. In that time, synchronization of axial flow fan using optical sensor is executed, and to identify the location of exact noise source in the fan profile determination of recording time is proposed. In the rotating of tan, it is explained that the location of noise source exists in and by the directivity, the noise radiation pattern of axial flow fan is determined and the flow of sound is visualized in the figure of contour mapping.

  • PDF

Sound PSD Image based Tool Condition Monitoring using CNN in Machining Process (생산 공정에서 CNN을 이용한 음향 PSD 영상 기반 공구 상태 진단 기법)

  • Lee, Kyeong-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.981-988
    • /
    • 2022
  • The intelligent production plant called smart factories that apply information and communication technology (ICT) are collecting data in real time through various sensors. Recently, researches that effectively applying to these collected data have gained a lot of attention. This paper proposes a method for the tool condition monitoring based on the sound signal generated in machining process. First, it not only detects a fault tool, but also presents various tool states according to idle and active operation. The second, it's to represent the power spectrum of the sounds as images and apply some transformations on them in order to reveal, expose, and emphasize the health patterns that are hidden inside them. Finally, the contrast-enhanced PSD image obtained is diagnosed by using CNN. The results of the experiments demonstrate the high discrimination potential afforded by the proposed sound PSD image + CNN and show high diagnostic results according to the tool status.

Development of Linux based Real-Time Spectrum Analyzer for Puretone Audiometer (순음청력검사기를 위한 리눅스 기반 실시간 스펙트럼 분석기 개발)

  • Kang, Deok-Hun;Shin, Bum-Joo;Jeon, Gye-Rok;Wang, Soo-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2830-2839
    • /
    • 2011
  • Because the puretone audiometer is an important medical instrument used to diagnose hearing loss, the IEC and ANSI has been published a specification with which audiometer should comply. This paper describes development of Linux based real-time spectrum analyzer which is dedicated to puretone audiometer. It can measure not only hearing level but also compliance of IEC standard for puretone audiometer such as frequency accuracy, harmonic distortion, pulsed tone, narrow band noise and linearity. We have verified our real-time spectrum analyzer through comparing to commercial product.

Turbo Equalization for Covert communication in Underwater Channel (터보등화를 이용한 직접대역확산통신 기반의 은밀 수중통신 성능분석)

  • Ahn, Tae-Seok;Jung, Ji-Won;Park, Tae-Doo;Lee, Dong-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1422-1430
    • /
    • 2016
  • Researches for oceans are limited to military purpose such as underwater sound detection and tracking system. Underwater acoustic communications with low-probability-of-interception (LPI) covert characteristics were received much attention recently. Covert communications are conducted at a low received signal-to-noise ratio to prevent interception or detection by an eavesdropper. This paper proposed optimal covert communication model based on direct sequence spread spectrum for underwater environments. Spread spectrum signals may be used for data transmission on underwater acoustic channels to achieve reliable transmission by suppressing the detrimental effect of interference and self-interference due to jamming and multipath propagation. The characteristics of the underwater acoustic channel present special problems in the design of covert communication systems. To improve performance and probability of interception, we applied BCJR(Bahl, Cocke, Jelinek, Raviv) decoding method and the direct sequence spread spectrum technology in low SNR. Also, we compared the performance between conventional model and proposed model based on turbo equalization by simulation and lake experiment.

Analysis of Sound Attenuation by Chambers in Duct Systems by the Finite Element Method (유한요소법에 의한 소음기의 감음특성해석)

  • 최석주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.23-27
    • /
    • 1991
  • 각종 홀 (음악홀, 극장, 사무실건물)의 공조 덕트계에는 미로형소음챔버가 설 치되는 경우가 많다. 이러한 소음장치를 건물내부에 설치하는 경우에는 건물 설계단계에서부터 소음챔버로 인한 감음양(투과손실 : Transmission Loss)의 예측계산이 중요하다. 그렇지만, 일반적인 소음장치는 그 형상이나 내표면의 흡음조건이 아주 복잡하기 때문에, 현단계에서는 간단한 이론만으로 투과손 실예측이 거의 불가능하다. 지금까지 이 문제에 대해서 유한요소법(Finite Element Method : FEM)을 이용해 검토한 예가 종종 소개되었으나, 대부분 소음챔버의 입구와 출구에서의 임의의 점에 대한 음압비를 투과손실로서 구 하고 있다. 그러나, 소음기자체의 실질적인 투과손실특성을 알기 위해서는 소음기의 입력 파워에 대한 출력파워의 비로서 구하지 않으면 안된다. 따라 서, 본 연구에서는 유한요소법에 의한 복소음향인텐시티(Complex sound intensity)의 수치계산법을 각종소음기 (팽창형, 미로형)의 투과손실해석에 적 용하기 위하여 이론적인 면에서 고찰했으며, 프로그램도 개발하여 모델해석 에 적용하였다. 또한, 위에서 언급된 수치해석법의 타당성의 검증을 위하여, 측정에 의한 투과손실예측방법으로서 크로스스펙트럼(Cross Spectrum)법에 의한 음향인텐시티계측법의 이용에 대해서 이론적으로 고찰했으며, 그 이론 을 기초로 한 축척 모형실험을 병행하였다.

  • PDF

Identification of Gear Noise for Industrial Robots (산업용 로봇의 기어소음 특성 고찰)

  • Kim, Dong-Hae;Lee, Jong-Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.152-155
    • /
    • 2002
  • An industrial robot noise has various noise sources such as gears, motors, bearings, and controller fans. Among these, gears are the most dominant source for noise. The gear noise, caused by tooth profile, elastic deformation, machining error and wear, is directly correlated with the transmission error of mating gear. Due to the fact that has several axis and many gears, it is difficult to understand the characteristics of the vibration and noise of robots. In this study, some advanced analysis techniques based on digital signal processing such as power spectrum, time spectral map, RPM map, and etc., were applied for locating the dominant frequency components of the robot noises and identifying their sources. In addition, sound quality analysis was performed in order to evaluate the operator's annoyance. The noise and vibration measurements were carried out at several points during the operation of each axis considering the effect of load and posture of the robot. Eased on the results, proper countermeasures to reduce excessive noise level have been suggested considering the characteristics of sources.

  • PDF

Calculation Model of Roughness for Searching Roughness-contributed Components (러프니스 계산 알고리즘의 구현 및 이를 이용한 러프니스 기여성분 탐색방법의 제안)

  • Jeong, Hyuk;Kim, Hyun-Bin;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.7
    • /
    • pp.3-12
    • /
    • 2001
  • It is known that the roughness is one of the most important metrics in assessing the sound quality. In this study, a new roughness model is suggested by combing the previous auditory filter model and several signal processing methods for the enhancement of calculation efficiency and accuracy. For testing the usefulness of the present model, the predicted responses are compared with the experimental data and it is observed that they are in good agreements. Also, it is found that the previous models have limitations to search frequency components mainly contributed to overall roughness. By modifying the correlation criteria of the present model, the revised model for the proper estimation of roughness-contributed components is embedded.

  • PDF

Sound Detection Characteristics Using Fabry-Perot Fiber Optic Sensor which Simply Supported in Structure (양단이 지지된 Fabry-Perot 광섬유센서의 음압 감지 특성 연구)

  • 이종길;이진우;이준호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.585-591
    • /
    • 2003
  • In this paper, fiber optic sensor using Fabry-Perot interferometer which had benefit of minimize and light-weight was used. The sensor head has 1cm in length, total length of fiber is 9.5 chi and the sensor supported at both ends, simply. To analyze the acoustic characteristic non-directional speaker is used as a sound source. Acoustic applied in lateral direction and detected two signals were compared each other. Below 1㎑ fiber optic sensor has more sensitive than microphone, but in 2㎑ fiber optic sensor has less sensitive than microphone. This characteristic varies to the supporting system of fiber optic sensor. It was confirmed that the Fabry-Perot interferometric sensor detected acoustic signal, effectively. This kind of sensor can be applied to the structural health monitoring field of intellectual structure.